• Title/Summary/Keyword: Low-Velocity Impact Damage

Search Result 118, Processing Time 0.021 seconds

Failure Analysis on the Carbon/Epoxy Laminate Subjected to Low Velocity Impact (저속충격을 받는 Carbon/Epox 적층판의 손상 해석)

  • 이호철;이영신;김재훈;전제춘
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.98-101
    • /
    • 2000
  • Recently, composite material which has much excellent mechanical characteristics has been applied in many industries. However, it has a brittle characteristic under impact condition and its invisible characteristics of the damaged area has been the motivation of many engineers investigation. The modified failure criterion is implemented to predict the failure behavior of the composite plate subjected to low velocity impact using commercial finite element analysis code, ABAQUS-Ver. 5.8. The new criterion is in good agreement with experimental results and can predict the failure behavior of the composite plate subjected to low velocity impact more accurately.

  • PDF

Evaluation of the Absorbing Performance of Radar-absorbing Structure with Periodic Pattern after the Low-velocity Impact (주기패턴 레이더 흡수 구조의 저속충격 후 흡수 성능 평가)

  • Joon-Hyung, Shin;Byeong-Su, Kwak
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.469-476
    • /
    • 2022
  • In this paper, the microwave absorbing characteristics after the impact of the radar-absorbing structure (RAS) consisting of periodic pattern sheet (PPS) and glass fiber-reinforced plastic (GFRP) were experimentally investigated. The fabricated RAS effectively absorbed the microwave in the X-band (8.2-12.4 GHz). In order to induce the damage to the RAS, a low-velocity impact test with various impact energy of 15, 40, and 60 J was conducted. Afterward, the impact damage was observed by using visual inspection, non-destructive test, and image processing method. Moreover, the absorbing performance of intact and damaged RAS was measured by the free-space measurement system. The experiment results revealed that the delamination damage from the impact energy of 15 J did not considerably affect the microwave absorbing performance of the RAS. However, fiber breakage and penetration damage with a relatively large damaged area were occuured when the impact energy was increased up to 40 J and 60 J, and these failures significantly degraded the microwave absorbing characteristics of the RAS.

Reconstruction of Damage-Induced Impact Force of Gr/Ep Composite Laminates Using Piezoelectric Thin Film Sensor Signals (고분자 압전센서 신호를 이용한 Gr/Ep 복합재 적층판의 손상유발 충격하중의 복원)

  • 박찬익;김인걸;이영신
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.7-13
    • /
    • 2002
  • The piezoelectric thin film sensor has good characteristics to observe the impact responses of composite structures. The capabilities for monitoring impact behavior of Gr/Ep laminates subjected to damage-induced impact using the PVDF(polyvinylidene fluoride) film sensor were examined. For a series of low-velocity impact tests from low energy to damage-induced energy, simulated sensor signals were compared with measured signals and the PVDF film sensor. Local impact damages(matrix cracking and delamination) were found at three impact tests, but the measured signals agreed well with the simulated sensor signals based on the linear relationship between the impact forces and the PVDF film sensor signals. And the inverse technique was applied to reconstruct the impact forces using the PVDF film sensor signals. Most of reconstructed impact forces had good agreement with the measured forces. The comparison results showed that the local damage due. to low-velocity impact didn't disturb the global impact responses of composite laminates and the reconstruction of impact forces from PVDF sensor signals wasn't affected by the local damage.

Damage Assessment of Curved Composite Laminate Structures Subjected to Low-Velocity Impact (곡률을 가진 적층복합재 구조에서의 저속충격손상 평가)

  • 전정규;권오양;이우식
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.22-32
    • /
    • 2001
  • Damage induced by low-velocity impact on the curved composite laminates was experimentally evaluated for CFRP cylindrical shells with the radius of curvatures of 50, 150, 300, and 500 mm. The result was then compared with that of flat laminates and with the results by nonlinear finite-element analysis. The radius of curvatures and the effective shell stiffness appeared to considerably affect the dynamic impact response of curved shells. Under the same impact energy level, the maximum contact force increased with the decreasing radius of curvatures, with reaching 1.5 times that for plates at the radius of curvature of 50 mm. Since the maximum contact farce is directly related to the impact damage, curved laminates can be more susceptible to delamination and less resistant to the low-velocity impact damage. Delamination was distributed rather evenly at each interface along the thickness direction of curved laminates on the contrary to the case of flat laminates, where delamination is typically concentrated at the interfaces away from the impact point. This implies that the effect of curvatures has to be considered for the design of a curved composite laminate.

  • PDF

Damage mechanism of particle impact in a ${Al_2}}O_3}-TiO_2$plasma coated soda-lime glass (${Al_2}}O_3}-TiO_2$ 플라즈마 코팅된 유리의 입자충격에 의한 손상기구)

  • Suh, Chang-Min;Lee, Moon-Hwan;Hong, Dea-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.529-539
    • /
    • 1998
  • A quantitative study of impact damage of ${Al_2}}O_3}-TiO_2$ plasma coated soda-lime glasses was carried out and compared with that of the uncoated smooth glass specimen. The shape of cracks by the impact of steel ball was observed by stereo-microscope and the decrease of the bending strength due to the impact of steel ball was measured through the 4-point bending test. At the low velocity, cone cracks were occurred. As the impact velocity increases, initial lateral cracks were propagated on the slanting surface of a cone crack, and radial cracks were generated at the crushed site. When the impact velocity of steel ball exceeds the critical velocity, the contact site of specimen was crushed due to plastic deformation and then radial and lateral cracks were largely grown. Crack length of coated specimens was smaller than that of uncoated smooth specimen due to the effect of coating layer on the substrate surface. According to impact velocity, the bending strength of coated specimens had no significant difference, compared with that of the uncoated smooth specimen. But this represents that the bending strength of coated specimens was increased, considering the effect of sand blasting damage which was performed to increase the adhesion force of coating layer.

Low-velocity Impact Damdage Monitoring for Laminate Composite panels Using PVDF Sensor Signals and Acoustics Emission Signals (압전센서와 음향방출신호를 이용한 적층복합재 판재에 대한 저속 충격손상 모니터링)

  • Kim, Hyoung-Il;Kim, Jin-Won;Kim, In-Gul
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.27-30
    • /
    • 2005
  • This paper studied the PVDF(polyvinylidene fluoride) and Acoustic Emission sensors characteristics of the laminated composite panels under the low velocity impact. The various impact test by changing impact height is performed on the instrumented drop weight impact tester. The STFT(short time Fourier transform) and WT(wavelet transform) are used to decompose the each sensor signals. A ultrasonic C-scan and digital scope are used to define damaged area in each case. The test result indicated that the individual sensor signals involve the damage initiation and development.

  • PDF

DETECTION OF MICROSCOPIC BEHAVIOR OF LOW VELOCITY IMPACT DAMAGED CFRP LAMINATE UNDER TENSILE LOADING BY ELASTIC WAVES (탄성파 응용기술에 의한 CFRP 복합재료의 저속충격 손상역의 미시적 거동 특성 탐지)

  • 이준현;권오양;이승석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.650-655
    • /
    • 1993
  • Carbon/epoxy composite(CFRP) coupons previously damaged by low velocity impact were tested under static tensile loading and microscope progress of damage was characterized by ultrasonic C-scan, Scanning Acoustic Microscopy (SAM) and Acoustic Emission(AE) techniques which were based on the application of elastic waves. The degress of impact damage has been correlated with the AE activity during monotonic or loading/unloading tensile testing as well as the result of ultrasonic test. The coupons were subjected to impact velocities ranged from 0.71 to 2.17 m/sec, which introduced the amount of damage rated as 0%, 10%, 30%, and 50% with reference to the total absorbed energy at fracture. Special attention was paid to determine optimal AE parameters to characterize the microscopic fracture process and to predict the residual strength of composite laminates. AE RMS voltage during the early stage of tensile loading was found an effective parameter to quantify the degree of impact damage. It was also found that the Felicity ratio is closely related to the stacking sequence and the residual strength of the CFRP laminates.

  • PDF

The Impact fracture Behaviors of Low Density LD Carbon/Carbon Composites by Drop Weight Impact Test (낙하 충격 시험에 의한 저밀도 2-D탄소/탄소 복합재의 충격파괴거동)

  • 주혁종;손종석
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.270-278
    • /
    • 2002
  • In this study, the fracture behavior by low velocity impact damage and the tendencies of impact energy absorption were investigated. Low velocity impact tests were performed using a mini tower drop weight impact tester, and graphite powder, carbon black and milled carton fiber were chosen as additives. Addition of graphite powder increased the maximum load and maintained the stress long until the total penetration happened. At the content of 9 vol%, they showed the maximum of 42% improvement in impact strength compared composites containing no additives. At the test with low impact energy of 0.4 J, impact energy was consumed by delamination in the composite containing no additives, however, as graphite contents increased, the tendency of failure changed to the penetration of the specimen.

Behavior of Woven-glass/Epoxy Composites after Impact Loading (접촉하중형태에 따른 복합재의 거동변화)

  • 이재준;김병식;황성식;김태우;김찬묵
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.53-56
    • /
    • 2002
  • External low-velocity impact loadings onto the composites cause reduction of stiffness and/or strength. The reductions indicate that internal(external) damages were developed within the composites. These damages could be matrix cracking, fiber/matrix debonding, or delamination between layers. In previous studies, damage evaluation have been done by applying secondary mechanical loading such as buckle-driven compressive, or fatigue, or flexural loadings. An evaluation method by applying indentation loadings on the composites was proposed. The load-displacement curves obtained from the indentation testing provided the extent of damages within the composites due to impact loadings.

  • PDF

A Study on the Low Velocity Impact Response of Woven Fabric Composites for the Hybrid Composite Train Bodyshell (하이브리드 복합재 철도차량 차체 적용 적층판의 저속충격특성 연구)

  • Lee Jae-Hean;Cheong Seong-Kyun;Kim Jung-Seok
    • Composites Research
    • /
    • v.18 no.3
    • /
    • pp.7-13
    • /
    • 2005
  • This paper presents a study on the low velocity impact response of the woven fabric laminates for the hybrid composite bodyshell of a tilting railway vehicle. In this study, the low velocity impact tests for the three laminates with size of $100mm\times100mm$ were conducted at three impact energy levels of 2.4J, 2.7J and 4.2J. Based on the tests, the impact force, the absorbed energy and the damaged area were investigated according to the different energy levels and the stacking sequences. The damage area was evaluated by the visual inspection and the C-scan device. The test results show that the absorbed energy of [fill]8 laminate is highest whereas (fill2/warp2)s is lowest. The [fill]8 laminate has the largest damage area because of the highest impact energy absorption.