• Title/Summary/Keyword: Low-Swing Technology

Search Result 104, Processing Time 0.019 seconds

Ship′s Distance Measuring System by the GPS Receiver in Anchoring Watch (GPS 선간거리계측 시스템에 의한 묘박상황의 감시)

  • 김광홍;신형일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.4
    • /
    • pp.257-266
    • /
    • 2001
  • It was set up MCS and MS of ship's distance measuring system in land and ship respectively and ship's track including dropped and hove up anchor was tracked by mean of measurement for ship's position, relative bearing and distance from MCS to MS. Results analyzed for possibility of real time anchoring watch and effectiveness of measuring position are as follow; (1) The elapsed time from dropped anchor to hove up anchor is 4 minutes and the elapsed time to start recording ship's track after set up anchoring state is 10 minutes approximately. (2) Shape of hull's swing during anchoring is mostly 8 figue-like or rarely peanut-like shape. (3) Mean anchoring position during whole measuring time was shifted 49m north and 89m eastly. (4) Ship's track were moved counter-clockwise for $8.1^\circ$ range from relative bearing $186.1^\circ$ to $194.2^\circ$ ellipse-like tracks with the major axis 63m and the minor axis 53m. (5) High frequency of ship's position distribution was shown at relative bearing $187^\circ$ and distance 558m while low frequency was shown at relative bearing $194^\circ$ and distance 556m. (6) The designed ship's distance measuring system by PRTK-GPS was fit very well for anchoring watch as secured necessary area demanded for dragging anchor as well as anchoring by means of real time measurement both in distance and bearing.

  • PDF

A 10b 50MS/s Low-Power Skinny-Type 0.13um CMOS ADC for CIS Applications (CIS 응용을 위해 제한된 폭을 가지는 10비트 50MS/s 저 전력 0.13um CMOS ADC)

  • Song, Jung-Eun;Hwang, Dong-Hyun;Hwang, Won-Seok;Kim, Kwang-Soo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.5
    • /
    • pp.25-33
    • /
    • 2011
  • This work proposes a skinny-type 10b 50MS/s 0.13um CMOS three-step pipeline ADC for CIS applications. Analog circuits for CIS applications commonly employ a high supply voltage to acquire a sufficiently acceptable dynamic range, while digital circuits use a low supply voltage to minimize power consumption. The proposed ADC converts analog signals in a wide-swing range to low voltage-based digital data using both of the two supply voltages. An op-amp sharing technique employed in residue amplifiers properly controls currents depending on the amplification mode of each pipeline stage, optimizes the performance of op-amps, and improves the power efficiency. In three FLASH ADCs, the number of input stages are reduced in half by the interpolation technique while each comparator consists of only a latch with low kick-back noise based on pull-down switches to separate the input nodes and output nodes. Reference circuits achieve a required settling time only with on-chip low-power drivers and digital correction logic has two kinds of level shifter depending on signal-voltage levels to be processed. The prototype ADC in a 0.13um CMOS to support 0.35um thick-gate-oxide transistors demonstrates the measured DNL and INL within 0.42LSB and 1.19LSB, respectively. The ADC shows a maximum SNDR of 55.4dB and a maximum SFDR of 68.7dB at 50MS/s, respectively. The ADC with an active die area of 0.53$mm^2$ consumes 15.6mW at 50MS/s with an analog voltage of 2.0V and two digital voltages of 2.8V ($=D_H$) and 1.2V ($=D_L$).

A Design of Transceiver for 13.56MHz RFID Reader using the Peak Detector with Automatic Reference Voltage Generator (자동 기준전압 생성 피크 검출기를 이용한 13.56 MHz RFID 리더기용 송수신기 설계)

  • Kim, Ju-Seong;Min, Kyung-Jik;Nam, Chul;Hurh, Djyoung;Lee, Kang-Yun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.3
    • /
    • pp.28-34
    • /
    • 2010
  • In this paper, the transceiver for RFID reader using 13.56MHz as a carrier frequency and meeting International Standard ISO 14443 type A, 14443 type B and 15693 is presented. The receiver is composed of envelope detector, VGA(Variable Gain Amplifier), filter, comparator to recovery the received signal. The proposed automatic reference voltage generator, positive peak detector, negative peak detector, and data slicer circuit can adjust the decision level of reference voltage over the received signal amplitudes. The transmitter is designed to drive high voltage and current to meet the 15693 specification. By using inductor loading circuit which can swing more than power supply and drive large current even under low impedance condition, it can control modulation rate from 30 percent to 5 percent, 100 perccnt and drive the output currents from 5 mA to 240 mA depending on standards. The 13.56 MHZ RFID reader is implemented in $0.18\;{\mu}m$ CM08 technology at 3.3V single supply. The chip area excluding pads is $1.5mm\;{\times}\;1.5mm$.

A 1.1V 12b 100MS/s 0.43㎟ ADC based on a low-voltage gain-boosting amplifier in a 45nm CMOS technology (45nm CMOS 공정기술에 최적화된 저전압용 이득-부스팅 증폭기 기반의 1.1V 12b 100MS/s 0.43㎟ ADC)

  • An, Tai-Ji;Park, Jun-Sang;Roh, Ji-Hyun;Lee, Mun-Kyo;Nah, Sun-Phil;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.122-130
    • /
    • 2013
  • This work proposes a 12b 100MS/s 45nm CMOS four-step pipeline ADC for high-speed digital communication systems requiring high resolution, low power, and small size. The input SHA employs a gate-bootstrapping circuit to sample wide-band input signals with an accuracy of 12 bits or more. The input SHA and MDACs adopt two-stage op-amps with a gain-boosting technique to achieve the required DC gain and high signal swing range. In addition, cascode and Miller frequency-compensation techniques are selectively used for wide bandwidth and stable signal settling. The cascode current mirror minimizes current mismatch by channel length modulation and supply variation. The finger width of current mirrors and amplifiers is laid out in the same size to reduce device mismatch. The proposed supply- and temperature-insensitive current and voltage references are implemented on chip with optional off-chip reference voltages for various system applications. The prototype ADC in a 45nm CMOS demonstrates the measured DNL and INL within 0.88LSB and 1.46LSB, respectively. The ADC shows a maximum SNDR of 61.0dB and a maximum SFDR of 74.9dB at 100MS/s, respectively. The ADC with an active die area of $0.43mm^2$ consumes 29.8mW at 100MS/s and a 1.1V supply.