• Title/Summary/Keyword: Low-Speed Wind Tunnel

Search Result 101, Processing Time 0.027 seconds

Conceptual Study of a Low-Speed Wind Tunnel for Performance Test of Wind Turbine (풍력터빈 성능시험을 위한 저속풍동 개념연구)

  • Kang, Seung-Hee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.24-29
    • /
    • 2011
  • Conceptual study of an open-circuit type low-speed wind tunnel for performance test of wind turbine blade and airfoil is conducted. The tunnel is constituted of a settling chamber, a contraction, closed test section, a diffuser, two corners, a cross leg and a fan and motor. For the performance test, the closed test section width of 1.8 m, height of 1.8 m and length of 5.25 m is selected. The contraction ratio is 9 to 1 and maximum speed in the test section is 67 m/sec. Input power in the tunnel is about 238 kW and its energy ratio is 3.6. The wind tunnel designed in present study will be an effective tool in research and development of wind turbine and airfoil.

Conceptual Design Study of a Low-Speed Wind Tunnel for Performance Test of Wind Turbine (풍력터빈 성능시험을 위한 풍동 개념연구)

  • Kang, Seung-Hee;Choi, Woo-Ram;Kim, Hae-Jeong;Kim, Yong-Hwi
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.431-434
    • /
    • 2009
  • Conceptual study of an open-circuit type low-speed wind tunnel for test of wind turbine blade is conducted. The tunnel is constituted of a settling chamber, a contraction, closed and open test sections, a diffuser, two corners, a cross leg and a fan and motor. For the performance test, the closed test section width of 1.8 m, height of 1.8 m and length of 5.25 m is selected. The open test section with dimension width of 1.8 m, height of 1.8 m and length of 4.14 m is adopted for aeroacoustic test. The contraction ratio is 9 to 1 and maximum speed in the closed test section is 67 m/sec. Input power in the tunnel is about 238 kW and its energy ratio is 3.6. The wind tunnel designed in present study will be an effective tool in research and development of wind turbine.

  • PDF

Study on the Aerodynamic Characteristics of Hanyang Low Speed Wind Tunnel (한양대학교 중형 아음속 풍동의 공력특성에 관한 연구)

  • Go, Gwang Cheol;Jeong, Hyeon Seong;Kim, Dong Hwa;Jo, Jin Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.92-98
    • /
    • 2003
  • The optimum design of Hanyang low speed wind tunnel has been performed to augment flow uniformity and to reduce turbulence intensity of wind tunnel test section have to be known for reliability of wind tunnel test. The non-uniformity and turbulence intensity of Hanyang low speed wind tunnel were measured with Pilot tube and X-type hot-wire probe at various wind speeds. As the results, the non-uniformity decreases as the wind speed increases. The non-uniformity is relatively high in the proximity of the diffuser. The turbulence intensity is a little higher than design requirement in the middle of the test section.

Wind Tunnel Testing Productivity at KARI LSWT

  • Chung, Jindeog;Cho, Taehwan;Sung, Bongzoo;Lee, Jangyeon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.103-109
    • /
    • 2001
  • Productivity enhancement program of wind tunnel testing has begun at Korea Aerospace Research Institute Low Speed Wind Tunnel (KARI LSWT). A previous test record of a canard airplane model was adopted to examine the current status of wind tunnel testing efficiency. The time consumed to perform testing activities from the model preparation to data collection was broken down and the results were compared with those of the recent Boeing low speed test result. The efforts to improve the wind tunnel productivity consisted of the installation of mini crane underneath of test section, fabricating lift device for image fairings, model configuration changing rigs and the modifications of external balance system. Time reductions for changing strut interface platform and installation of image fairings. These effects showed more than 70% improvement over the previous test time. Integration of the new and modified systems will improve productivity of wind tunnel testing in KARI LSWT.

  • PDF

Low Speed Wind Tunnel Testing to Measure Drag with Velocity Variation on a Cube Body

  • Rahmanto, R. Hengki;Choe, Gwang-Hwan;Go, Dong-Gyun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.96-102
    • /
    • 2008
  • For centuries now, wind tunnels have been a key element in scientific research in a number of fields. Experimenting with racecars, airplanes, weather patterns, birds, and various other areas has been made much easier because of its development. In the racing field, for example, the information gathered from this testing can mean the difference between winning and losing a race. Weather simulations can also provide valuable information regarding building stability and safety. This has become very important when designing buildings today. Valuable information concerning bird flight has also been collected based on wind tunnel testing. Wind tunnels have a variety of important uses in the world today. Wind tunnel that used here is an open loop low speed wind tunnel. The fundamental principles of this tunnel is moving the air using exhaust fan In the rear side, and placing the cube in the external balance system which used to measure the working force. This experiment is using 50mm cube of finished wood. From this experiment we can get Drag Force (FD), The Reynolds Number (Re) and The Coefficient of Brae (CD).

  • PDF

Prediction of Aeroacoustics Noise of Pantograph via Low Speed Wind Tunnel Test and Flow Simulation (저속풍동실험 및 유동해석을 통한 고속전철 판토그라프의 유동소음 해석)

  • 조운기;이종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1207-1214
    • /
    • 2001
  • The paper deals with the computational approach in analysis and design of pantograph panhead strips of high-speed railway in aerodynamic and aeroacoustic concerns. Pantograph is an equipment such that the electric power is supplied from catenary system to train. Due to the nature of complexity in high-speed fluid flow, turbulence and downstream vortices result in the instability in the aerodynamic contact between panhead strips and catenary system, and consequently generate the considerable levels of flow-induced sound. In this paper, based on the preceding low speed wind-tunnel test and simulations, the aerodynamic and aeroacoustic characteristics in low speed are analyzed.

  • PDF

Wind-lens turbine design for low wind speed

  • Takeyeldein, Mohamed M.;Ishak, I.S.;Lazim, Tholudin M.
    • Wind and Structures
    • /
    • v.35 no.3
    • /
    • pp.147-155
    • /
    • 2022
  • This research proposes a wind-lens turbine design that can startup and operate at a low wind speed (< 5m/s). The performance of the wind-lens turbine was investigated using CFD and wind tunnel testing. The wind-lens turbine consists of a 3-bladed horizontal axis wind turbine with a diameter of 0.6m and a diffuser-shaped shroud that uses the suction side of the thin airfoil SD2030 as a cross-section profile. The performance of the 3-bladed wind-lens turbine was then compared to the two-bladed rotor configuration while keeping the blade geometry the same. The 3-bladed wind-lens turbine successfully startup at 1m/s and produced a torque of 66% higher than the bare turbine, while the two-bladed wind-lens turbine startup at less than 4m/s and produced a torque of 186 % higher than the two-bladed bare turbine at the design point. Findings testify that adding the wind-lens could improve the bare turbine's performance at low wind speed.

Wind tunnel test for the 20% scaled down NREL wind turbine blade (NREL 풍력터빈 블레이드 20% 축소모델 풍동시험 결과)

  • Cho, Taehwan;Kim, Cheolwan;Kim, Yangwon;Rho, Joohyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.33.2-33.2
    • /
    • 2011
  • The 'NREL Phase VI' model with a 10.06m diameter was tested in the NASA Ames tunnel to make a reference data of the computational models. The test was conducted at the one rotational speed, blade tip speed 38m/s and the Reynolds number of the sectional airfoils in that test was around 1E6. The 1/5 scale down model of the 'NREL Phase VI' model was used in this paper to study the power characteristics in low Reynolds number region, 0.1E6 ~ 0.4E6 which is achievable range for the conventional wind tunnel facilities. The torque generated by the blade was directly measured by using the torque sensor installed in the rotating axis for a given wind speed and rotational speed. The power characteristics below the stall condition, lambda > 4, was presented in this paper. The power coefficient is very low in the condition below the Re. 0.2E6 and rapidly increases as the Re. increases. And it still increases but the variation is not so big in the condition above the Re. 0.3E6. This results shows that to study the performance of the wind turbine blade by using the scaled down model, the Re. should be larger than the 0.3E6.

  • PDF

An Experimental Study of Test Section Velocity Calibration for Low-Speed Wind Tunnel (저속풍동 시험부 속도교정에 관한 실험적 연구)

  • Oh, Se-Yoon;Lee, Jong-Geon;Kim, Sung-Cheol;Kim, Sang-Ho;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.230-236
    • /
    • 2012
  • The purpose of this research is to determine the calibration constants of the wind speed measurement systems required to calculate the wind tunnel velocity in the test section. In the present work, the aerodynamic calibration tests of the test section were conducted in the Agency for Defense Development's Low-Speed Wind Tunnel. The test speed ranged from 10 to 100 m/s with a reference pitot-static pressure probe. The validity of the calibration results was evaluated by comparing them with the previous calibration constants. The calibration results show that fair to good agreement is obtained with resonable accuracy.

Investigation on Severe Aerodynamic Load Condition about Pantograph (판토그래프 가혹공력하중에 대한 연구)

  • Hwang, Jae-Ho;Lee, Dong-Ho;Chung, Kyung-Ryul
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.361-366
    • /
    • 2001
  • The present study describes a practical estimation procedure about the pantograph under several severe aerodynamic load conditions. As the operating speed of the Korean Train Express(KTX) reaches 350km/h, structural safety at various conditions should be examined at the design stage. In the present study, a compact and reliable procedure is developed to get aerodynamic loads on each part of the pantograph regarding the typhoon condition, the train/tunnel interaction, the train/train interaction and the side wind condition. In the estimation procedure, 3-dimensional steady and unsteady CFD simulation around the high speed train facilitates assigning the external local flow condition around the pantograph. The procedure is verified using the results of the low speed wind tunnel test at JARI and applied to 7 flow conditions and 4 operation configurations.

  • PDF