• Title/Summary/Keyword: Low-Rate WPAN

Search Result 82, Processing Time 0.019 seconds

Queuing Analysis of IEEE 802.15.4 GTS Scheme for Bursty Traffic (Bursty Traffic을 위한 IEEE 802.15.4 GTS 기법의 대기 해석)

  • Le, Nam-Tuan;Choi, Sun-Woong;Jang, Yeong-Min
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.87-91
    • /
    • 2010
  • The IEEE 802.15.4 and IEEE 802.15.7 standard are the typical of low rate wireless and Visible Light Wireless personal area networks. Its Medium Access Control protocol can support the QoS traffic flows for real-time application through guaranteed time slots (GTS) in beacon mode. However, how to achieve a best allocation scheme is not solved clearly. The current analytical models of IEEE 802.15.4 MAC reported in the literature have been mainly developed under the assumption of saturated traffic or non-bursty unsaturated traffic conditions. These assumptions don't capture the characteristics of bursty multimedia traffic. In this paper, we propose a new analytical model for GTS allocation with burst Markov modulated ON-OFF arrival traffic.

MB-OFDM UWB Technology for Increasing Transmission Reach of Wireless Speaker Systems (차세대 무선 스피커 시스템의 전송거리 증대를 위한 MB-OFDM UWB 기술)

  • Kim, Do-Hoon;Wee, Jung-Wook;Lee, Hyeon-Seok;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.6
    • /
    • pp.1-5
    • /
    • 2011
  • We present the Multi-band orthogonal frequency division multiplexing ultra-wideband (MB-OFDM UWB) technology for increasing the transmission reach of wireless speaker systems. The proposed scheme adopts the Reed-Solomon coding for preventing the random error perfectly and shows the SNR gain in low bit error rate (BER) especially. So, we can increase the maximum reach of MB-OFDM UWB technology since the receiver sensitivity is improved. The simulation environment includes most effects of realistic channel environments such as Additive White Gaussian Noise (AWGN), CM1 channel model, Sampling frequency offset (SFO), Carrier frequency offset (CFO) to improve the simulation accuracy. The simulation results show that the proposed scheme can give a maximum 2 dB SNR gain and increase the transmission reach up to 12.6m.