• 제목/요약/키워드: Low-Power Bus

검색결과 195건 처리시간 0.024초

유전 알고리즘을 이용한 퍼지형 안정화 제어기의 최적설계에 관한 연구 (A Study on the Optimal Design Fuzzy Type Stabilizing Controller Using Genetic Algorithm)

  • 이흥재;임찬호;윤병규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.326-328
    • /
    • 1998
  • This paper presents an optimal fuzzy power system stabilizer to damp out low frequency oscillation. The fuzzy logic controllers has been applied to a power system stabilizing controllers. But the design of a fuzzy logic power system stabilizer relies on empirical and heuristic knowledge of human experts as well as many trial-and-errors in general. This paper presents the optimal design method of the fuzzy logic stabilizer using the genetic algorithm, which is the optimization method based on the mechanics of natural selection and natural genetics. The proposed method tunes the parameters of the fuzzy logic stabilizer in order to minimize the consuming time during the design process. In this paper, the proposed method tunes the shape of membership function of the fuzzy variables. The proposed system is applied to the one-machine infinite-bus model of a power system. Through the case study, the efficiency of the fuzzy stabilizing controller tuned by genetic algorithm is verified.

  • PDF

DC 그리드 연계 된 효율적인 DC-DC 승압 컨버터 (An Efficient Step-Up DC-DC Converter for DC Grid Applications)

  • 이바둘라예브 안바르;박성준
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2020년도 전력전자학술대회
    • /
    • pp.91-93
    • /
    • 2020
  • In recently days using distributed power generation systems constructed with boost type dc-dc converters is being extremely popularized because of the rising need of environment friendly energy generation power systems. In this paper a new constructed An efficient Step-Up DC-DC Converter for DC Grid Applications s proposed to boost a low level DC voltage(36-80V) to high DC bus (380V) level. When comparing to other step-up converters, the proposed topology has a reduced number of switching devices, can make high quality power with lower input current ripple and has wider input DC voltage range. Finally, the performance of the proposed topology is presented by simulation results with 350W hardware prototype.

  • PDF

Low-Voltage-Stress AC-Linked Charge Equalizing System for Series-Connected VRLA Battery Strings

  • Karnjanapiboon, Charnyut;Jirasereeamornkul, Kamon;Monyakul, Veerapol
    • Journal of Power Electronics
    • /
    • 제13권2호
    • /
    • pp.186-196
    • /
    • 2013
  • This paper presents a low voltage-stress AC-linked charge equalizing system for balancing the energy in a serially connected, valve-regulated lead acid battery string using a modular converter that consists of multiple transformers coupled together. Each converter was coupled through an AC-linked bus to increase the overall energy transfer efficiency of the system and to eliminate the problem of the unbalanced charging of batteries. Previous solutions are based on centralized and modularized topologies. A centralized topology requires a redesign of the hardware and related components. It also faces a high voltage stress when the number of batteries is expanded. Modularized solutions use low-voltage-stress, double-stage, DC-linked topologies which leads to poor energy transfer efficiency. The proposed solution uses a low-voltage stress, AC-linked, modularized topology that makes adding more batteries easier. It also has a better energy transfer efficiency. To ensure that the charge equalization system operates smoothly and safely charges batteries, a small intelligent microcontroller was used in the control section. The efficiency of this charge equalization system is 85%, which is 21% better than other low-voltage-stress DC-linked charging techniques. The validity of this approach was confirmed by experimental results.

저전력을 위한 버스-인버트 코딩 분할 기법 (Decomposed Bus-Invert Coding Technique for Low Power)

  • 홍성백;김태환
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제28권1_2호
    • /
    • pp.52-57
    • /
    • 2001
  • 이 논문에서는 우리는 버스에서의 연속된 데이터 전송 시 발생하는 데이터 값의 천이를 줄이는 새로운 버스-인버트 코딩에 적용 된 것과는 달리, 우리의 기법은 다양한 버스 분할을 시도하여, 각 분할에 독립적으로 버스-인버트 코딩을 적용하여 전체의 데이터 값 천이를 최소화하고자 한다. 실제 회로를 통한 실험에서 기존의 버스-인버트 코딩과 비교하여 우리의 제안한 기법은 데이터 값의 천이를 전체적으로 10%-50% 수준으로 줄일 수 있음을 보여 준다.

  • PDF

저전력 회로 설계를 위한 분할 버스-인버트 코딩 기법 (Decomposed Bus Invert Coding Scheme For Low Power Circut Design)

  • 김태환;홍성백;엄준형;김영대;여준기
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (A)
    • /
    • pp.27-29
    • /
    • 2000
  • 버스-인버트 코딩 기법은 버스에서의 연속된 데이터 전송시 발생하는 데이터 값의 천이를 줄이는 기법이다. 기존의 방식에서는 전체버스 라인이나 그중의 한 일부분만에 버스-인터트 코딩을 적용했었던 것과는 달리, 우리의 기법은 버스 라인들을 몇 개의 묶음으로 분할하여, 각 묶음에 대해 독립적으로 버스-인버트 코딩을 적용하여 데이터 값의 천이를 최소화 하려고 한다. 실험을 통해서 우리의 기법은 데이터 값의 천이를 전체적으로 10-50% 감소시킬수 있음을 나타났다.

  • PDF

Battery State of Charge Balancing Based on Low Bandwidth Communication in DC Microgrid

  • Hoang, Duc-Khanh;Lee, Hong-Hee
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 추계학술대회 논문집
    • /
    • pp.33-34
    • /
    • 2016
  • This paper presents a load sharing method based on the low bandwidth communication (LBC) applied to a DC microgrid in order to balance the state of charge (SOC) of the battery units connected in parallel to the common bus. In this method, SOC of each battery unit is transferred to each other through LBC to calculate average SOC value. After that, droop coefficients of battery units are adjusted according to the difference between SOC of each unit and average SOC value of all batteries in the system. The proposed method can effectively balance the SOC of battery units in charging and discharging duration with a simple low bandwidth communication system.

  • PDF

Active Distribution System Planning Considering Battery Swapping Station for Low-carbon Objective using Immune Binary Firefly Algorithm

  • Shi, Ji-Ying;Li, Ya-Jing;Xue, Fei;Ling, Le-Tao;Liu, Wen-An;Yuan, Da-Ling;Yang, Ting
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.580-590
    • /
    • 2018
  • Active distribution system (ADS) considering distributed generation (DG) and electric vehicle (EV) is an effective way to cut carbon emission and improve system benefits. ADS is an evolving, complex and uncertain system, thus comprehensive model and effective optimization algorithms are needed. Battery swapping station (BSS) for EV service is an essential type of flexible load (FL). This paper establishes ADS planning model considering BSS firstly for the minimization of total cost including feeder investment, operation and maintenance, net loss and carbon tax. Meanwhile, immune binary firefly algorithm (IBFA) is proposed to optimize ADS planning. Firefly algorithm (FA) is a novel intelligent algorithm with simple structure and good convergence. By involving biological immune system into FA, IBFA adjusts antibody population scale to increase diversity and global search capability. To validate proposed algorithm, IBFA is compared with particle swarm optimization (PSO) algorithm on IEEE 39-bus system. The results prove that IBFA performs better than PSO in global search and convergence in ADS planning.

무효전력 경제급전을 고려한 345㎸ 송전계통의 기준 전압 설정 방법 (Determining the Reference Voltage of 345 kV Transmission System Considering Economic Dispatch of Reactive Power)

  • 황인규;진영규;윤용태;추진부
    • 전기학회논문지
    • /
    • 제67권5호
    • /
    • pp.611-616
    • /
    • 2018
  • In the cost based pool market in Korea, there is no compensation of reactive power because the fuel cost for reactive power is relatively low compared to that of active power. However, the change of energy paradigm in the future, such as widespread integration of distributed renewable energy source, will prevent the system operator from mandating the reactive power supply without any compensation. Thus, in this study, we propose the reference voltage of the 345 kV transmission system that minimizes the reactive power supply. This is closely related to the economic dispatch of reactive power aiming at minimizing the compensation cost for the reactive power service. In order to verify the effectiveness of the proposed reference voltage, the simulations are performed using the IEEE 14 bus system and the KEPCO real networks. The simulation results show that a voltage lower than the current reference value is recommended to reduce the reactive power supply and also suggest that the current voltage specification for the 345 kV system needs to be reviewed.

회전자 속도에 따라 변하는 게인에 기반한 가변속 풍력발전기 출력 평활화 (Power Smoothing of a Variable-Speed Wind Turbine Generator Based on the Rotor Speed-Dependent Gain)

  • 김연희;강용철
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.533-538
    • /
    • 2016
  • In a power grid that has a high penetration of wind power, the highly-fluctuating output power of wind turbine generators (WTGs) adversely impacts the power quality in terms of the system frequency. This paper proposes a power smoothing scheme of a variable-speed WTG that can smooth its fluctuating output power caused by varying wind speeds, thereby improving system frequency regulation. To achieve this, an additional loop relying on the frequency deviation that operates in association with the maximum power point tracking control loop, is proposed; its control gain is modified with the rotor speed. For a low rotor speed, to ensure the stable operation of a WTG, the gain is set to be proportional to the square of the rotor speed. For a high rotor speed, to improve the power smoothing capability, the control gain is set to be proportional to the cube of the rotor speed. The performance of the proposed scheme is investigated under varying wind speeds for the IEEE 14-bus system using an EMTP-RV simulator. The simulation results indicate that the proposed scheme can mitigate the output power fluctuation of WTGs caused by varying wind speeds by adjusting the control gain depending on the rotor speed, thereby supporting system frequency regulation.

계통상태를 고려한 송전선의 ELF 전자계 (ELF Electric and Magnetic Fields under the Transmission Line Including Electric Power System States)

  • 김두현;김상철
    • 한국안전학회지
    • /
    • 제11권3호
    • /
    • pp.89-96
    • /
    • 1996
  • This paper presents a study on the analysis and evaluation for ELF( Extremely Low Frequency) electric and magnetic fields under the transmission line according to the power system states. The power system states are classified into two types, normal state resulting from normal operation and alert state from outages. The current in a system is changed continually owing to the load fluctuations even in a normal operation. To calculate the current of the concerned line in a normal state, the system load level is devided into light, base and heavy load level. In case of contingency, an efficient algorithm based on matrix inversion lemma is developed to figure out the current changes. In order to analyze the variations of ELF field caused by the current fluctuations the electrostatic field approach which is far simpler than the electromagnetic field one based on Maxwell equation is introduced in this paper. The suggested method is applied to the IEEE 14 bus system to demonstrate the usefulness.

  • PDF