• 제목/요약/키워드: Low-Level Background gamma-Ray Spectrometry

검색결과 5건 처리시간 0.02초

In Situ Gamma-ray Spectrometry Using an LaBr3(Ce) Scintillation Detector

  • Ji, Young-Yong;Lim, Taehyung;Lee, Wanno
    • Journal of Radiation Protection and Research
    • /
    • 제43권3호
    • /
    • pp.85-96
    • /
    • 2018
  • Background: A variety of inorganic scintillators have been developed and improved for use in radiation detection and measurement, and in situ gamma-ray spectrometry in the environment remains an important area in nuclear safety. In order to verify the feasibility of promising scintillators in an actual environment, a performance test is necessary to identify gamma-ray peaks and calculate the radioactivity from their net count rates in peaks. Materials and Methods: Among commercially available scintillators, $LaBr_3(Ce)$ scintillators have so far shown the highest energy resolution when detecting and identifying gamma-rays. However, the intrinsic background of this scintillator type affects efficient application to the environment with a relatively low count rate. An algorithm to subtract the intrinsic background was consequently developed, and the in situ calibration factor at 1 m above ground level was calculated from Monte Carlo simulation in order to determine the radioactivity from the measured net count rate. Results and Discussion: The radioactivity of six natural radionuclides in the environment was evaluated from in situ gamma-ray spectrometry using an $LaBr_3(Ce)$ detector. The results were then compared with those of a portable high purity Ge (HPGe) detector with in situ object counting system (ISOCS) software at the same sites. In addition, the radioactive cesium in the ground of Jeju Island, South Korea, was determined with the same assumption of the source distribution between measurements using two detectors. Conclusion: Good agreement between both detectors was achieved in the in situ gamma-ray spectrometry of natural as well as artificial radionuclides in the ground. This means that an $LaBr_3(Ce)$ detector can produce reliable and stable results of radioactivity in the ground from the measured energy spectrum of incident gamma-rays at 1 m above the ground.

환경방사능의 감마선 분광분석을 위한 백그라운드 소멸 (Background Reduction for the ${\gamma}$-Ray Spectrometry of Environmental Radioactivity)

  • 서범경;이길용;윤윤열;이대원
    • 분석과학
    • /
    • 제14권3호
    • /
    • pp.212-220
    • /
    • 2001
  • 본 연구는 감마선 분광분석법을 이용하여 환경시료에 함유되어 있는 천연방사성 핵종인 라듐($^{226}Ra$) 및 라돈($^{222}Rn$)의 직접분석법의 개발을 목표로 수행되었다. 감마선 분광분석법에 의한 라듐 및 라돈의 분석에서는 주변환경조건에 따라서 변화의 폭이 큰 대기중의 라돈 및 딸핵종에 의한 백그라운드 영향을 소멸시키거나 보정해 주어야만 한다. 본 고에서는 측정함 내부로 질소가스를 흘려주어 측정함 내부를 질소가스 분위기로 바꾸어 줌으로서 대기중의 라돈 및 딸핵종에 의한 불안정한 백그라운드를 소멸시키고자 하였다. 질소가스를 검출기 주위로 흘려주었을 때, 1 MeV 이하의 에너지 영역에 대해서는 80% 그리고 1 MeV 이상에서는 20~50% 정도까지 백그라운드를 감소시킬 수 있었다. 즉, 검출기 주위를 질소분위기로 바꾸어 줌으로서 백그라운드를 소멸, 안정화시킴으로서 검출감도를 약 10배 향상시킬 수 있었다.

  • PDF

Study of Naturally Occurring Radioactive Material Present in Deep Soil of the Malwa Region of Punjab State of India Using Low Level Background Gamma-Ray Spectrometry

  • Srivastava, Alok;Chahar, Vikash;Chauhan, Neeraj;Krupp, Dominik;Scherer, Ulrich W.
    • Journal of Radiation Protection and Research
    • /
    • 제47권1호
    • /
    • pp.16-21
    • /
    • 2022
  • Background: Epidemiological observations such as mental retardation, physical deformities, etc., in children besides different types of cancer in the adult population of the Malwa region have been reported. The present study is designed to get insight into the role of naturally occurring radioactive material (NORM) in causing detrimental health effects observed in the general population of this region. Materials and Methods: Deep soil samples were collected from different locations in the Malwa region. Their activity concentrations were determined using low-level background gammaray spectrometry. High efficiency and high purity germanium detector capped in a lead-shielded chamber having a resolution of 1.8 keV at 1,173 keV and 2.0 keV at the 1,332 keV line of 60Co was used in the present work. Data were evaluated with Genie-2000 software. Results and Discussion: Mean activity concentrations of 238U, 232Th, and 40K in deep soil were found to be 101.3 Bq/kg, 65.8 Bq/kg, and 688.6 Bq/kg, respectively. The mean activity concentration of 238U was found to be three and half times higher than the global average prescribed by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). It was further observed that the activity concentration of 232Th and 40K has a magnitude that is nearly one and half times higher than the global average prescribed by UNSCEAR. In addition, the radioisotope 137Cs which is likely to have its origin in radiation fallout was also observed. It is postulated that the NORM present in high quantity in deep soil somehow get mobilized into the water aquifers used by the general population and thereby causing harmful health problems. Conclusion: It can be stated that the present work has been able to demonstrate the use of low background gamma-ray spectrometry to understand the role of NORM in causing health-related effects in a general population of the Malwa region of Punjab, India.

A comparative study of different radiometric methodologies for the determination of 226Ra in water

  • Al-Hamarneh, Ibrahim F.;Almasoud, Fahad I.
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.159-164
    • /
    • 2018
  • An evaluation of various radiometric methods to analyze $^{226}Ra$ in water has been employed on a set of 10 standard solutions of different concentrations in the range of $1-10Bq/L^{-1}$. The analysis was carried out using well-established procedures by means of gamma-ray, alpha-particle and liquid scintillation spectrometry. The feasibility of the various methods has been quantified in terms of relative standard error and percentage error. Correlations between the various methods have been presented and discussed. In general, good agreement was found in the results of various methodologies, which assures the accuracy of the methods and allows for the validation of instrumentation and procedures. Of the different methods adopted here, a combined procedure for the determination of $^{226}Ra$ along with $^{228}Ra$ using Quantulus 1220 ultra-low level background liquid scintillation counting gave the most accurate results.

The Transport Characteristics of 238U, 232Th, 226Ra, and 40K in the Production Cycle of Phosphate Rock

  • Jung, Yoonhee;Lim, Jong-Myoung;Ji, Young-Yong;Chung, Kun Ho;Kang, Mun Ja
    • Journal of Radiation Protection and Research
    • /
    • 제42권1호
    • /
    • pp.33-41
    • /
    • 2017
  • Background: Phosphate rock and its by-product are widely used in various industries to produce phosphoric acid, gypsum, gypsum board, and fertilizer. Owing to its high level of natural radioactive nuclides (e.g., $^{238}U$ and $^{226}Ra$), the radiological safety of workers who work with phosphate rock should be systematically managed. In this study, $^{238}U$, $^{232}Th$, $^{226}Ra$, and $^{40}K$ levels were measured to analyze the transport characteristics of these radionuclides in the production cycle of phosphate rock. Materials and Methods: Energy dispersive X-ray fluorescence and gamma spectrometry were used to determine the activity of $^{238}U$, $^{232}Th$, $^{226}Ra$, and $^{40}K$. To evaluate the extent of secular disequilibrium, the analytical results were compared using statistical methods. Finally, the distribution of radioactivity across different stages of the phosphate rock production cycle was evaluated. Results and Discussion: The concentration ratios of $^{226}Ra$ and $^{238}U$ in phosphate rock were close to 1.0, while those found in gypsum and fertilizer were extremely different, reflecting disequilibrium after the chemical reaction process. The nuclide with the highest activity level in the production cycle of phosphate rock was $^{40}K$, and the median $^{40}K$ activity was $8.972Bq{\cdot}g^{-1}$ and $1.496Bq{\cdot}g^{-1}$, respectively. For the $^{238}U$ series, the activity of $^{238}U$ and $^{226}Ra$ was greatest in phosphate rock, and the distribution of activity values clearly showed the transport characteristics of the radionuclides, both for the byproducts of the decay sequences and for their final products. Conclusion: Although the activity of $^{40}K$ in k-related fertilizer was relatively high, it made a relatively low contribution to the total radiological effect. However, the activity levels of $^{226}Ra$ and $^{238}U$ in phosphate rock were found to be relatively high, near the upper end of the acceptable limits. Therefore, it is necessary to systematically manage the radiological safety of workers engaged in phosphate rock processing.