• 제목/요약/키워드: Low-Energy Photon

검색결과 124건 처리시간 0.027초

광 계수 방식의 라만 라이다 시스템을 이용한 원격 수소 가스 농도 계측 방법에 대한 연구 (Study of a Method for Measuring Hydrogen Gas Concentration Using a Photon-counting Raman Lidar System)

  • 최인영;백성훈;차정호;김진호
    • 한국광학회지
    • /
    • 제30권3호
    • /
    • pp.114-119
    • /
    • 2019
  • 본 논문은 원격으로 수소 가스의 계측이 가능한 광 계수 방식의 소형 라만 라이다 시스템 개발에 관한 것이다. 수소 가스에 의한 라만 신호는 매우 미약한 신호로서, 신호 대 잡음비가 매우 낮다. 광 계수기는 광 판별기를 갖고 있어, 레이저에 의하여 발생한 배경 신호의 전기적 잡음을 제거할 수 있는 장점을 갖고 있다. 본 연구에서는 출력이 낮은 레이저와 광 계수기를 이용하여 소형의 라만 라이다 시스템을 개발하였다. 개발된 광 계수 방식의 라만 라이다 시스템의 원격 수소 가스 검출 능력을 증명하기 위하여 수소 가스 농도를 조절할 수 있는 가스 챔버를 이용하여 수소 가스 농도 측정 실험을 수행하였다. 그 결과 10 m 거리에서 최소 0.65 vol.%의 수소 가스 농도 검출이 가능하였다.

비정질/마이크로 탠덤 구조형 실리콘 박막 태양전지 ([ $a-Si:H/{\mu}c-Si:H$ ] thin-film tandem solar cells)

  • 이정철;송진수;윤경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.228-231
    • /
    • 2006
  • This paper briefly introduces silicon based thin film solar cells: amorphous (a-Si:H), microcrystalline ${\mu}c-Si:H$ single junction and $a-Si:H/{\mu}c-Si:H$ tandem solar cells. The major difference of a-Si:H and ${\mu}c-Si:H$ cells comes from electro-optical properties of intrinsic Si-films (active layer) that absorb incident photon and generate electron-hole pairs. The a-Si:H film has energy band-gap (Eg) of 1.7-1.8eV and solar cells incorporating this wide Eg a-Si:H material as active layer commonly give high voltage and low current, when illuminated, compared to ${\mu}c-Si:H$ solar cells that employ low Eg (1.1eV) material. This Eg difference of two materials make possible tandem configuration in order to effectively use incident photon energy. The $a-Si:H/{\mu}c-Si:H$ tandem solar cells, therefore, have a great potential for low cost photovoltaic device by its various advantages such as low material cost by thin-film structure on low cost substrate instead of expensive c-Si wafer and high conversion efficiency by tandem structure. In this paper, the structure, process and operation properties of Si-based thin-film solar cells are discussed.

  • PDF

조직 등가 섬광체를 이용한 계수형 선량계의 개발과 특성 평가 (Development and Characterization of a Dosimeter Using Tissue-Equivalent Scintillator by Photon-Counting Method)

  • 천종규;김성환;김홍주
    • 센서학회지
    • /
    • 제23권1호
    • /
    • pp.29-34
    • /
    • 2014
  • A dosimeter using tissue-equivalent scintillator by photon-counting method was developed and evaluated in its performance. The dosimeter is portable and can be operated by low power from lap-top computer. A data-acquisition software of the dosimeter system was developed by Labwindows/CVI based on Windows. The energy to channel ratio for energy calibration was 0.839 keV/ch. obtained from pulse height spectrum of $^{137}Cs$ and $^{60}Co$ gamma-ray. Using the dosimeter system, the absorbed dose of environmental radiation in Gyungju was 0.18 ${\mu}Sv/h$.

A novel approach in voltage transient technique for the measurement of electron mobility and mobility-lifetime product in CdZnTe detectors

  • Yucel, H.;Birgul, O.;Uyar, E.;Cubukcu, S.
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.731-737
    • /
    • 2019
  • In this study, a new measurement method based on voltage transients in CdZnTe detectors response to low energy photon irradiations is applied to measure the electron mobility (${\mu}_e$) and electron mobility-lifetime product $({\mu}{\tau})_e$ in a CdZnTe detector. In the proposed method, the pulse rise times are derived from low energy photon response to 59.5 keV($^{241}Am$), 88 keV($^{109}Cd$) and 122 keV($^{57}Co$) ${\gamma}-rays$ for the irradiation of the cathode surface at each detector for different bias voltages. The electron $({\mu}{\tau})_e$ product was then determined by measuring the variation in the photopeak amplitude as a function of bias voltage at a given photon energy using a pulse-height analyzer. The $({\mu}{\tau})_e$ values were found to be $(9.6{\pm}1.4){\times}10^{-3}cm^2V^{-1}$ for $1000mm^3$, $(8.4{\pm}1.6){\times}10^{-3}cm^2V^{-1}$ for $1687.5mm^3$ and $(7.6{\pm}1.1){\times}10^{-3}cm^2V^{-1}$ for $2250mm^3$ CdZnTe detectors. Those results were then compared with the literature $({\mu}{\tau})_e$ values for CdZnTe detectors. The present results indicate that, the electron mobility ${\mu}_e$ and electron $({\mu}{\tau})_e$ values in CdZnTe detectors can be measured easily by applying voltage transients response to low energy photons, utilizing a fast signal acquisition and data reduction and evaluation.

능동형 전자식 개인피폭선량계의 저에너지 X선 영역별 최적화를 위한 에너지보상 필터 두께에 대한 연구 (The Study of Energy Compensation Filter Thickness for Each Energy Area of Low Energy X-ray Beam Optimization on Active Electronic Personal Dosimeter)

  • 김정수;박연현;채현식
    • 한국방사선학회논문지
    • /
    • 제16권5호
    • /
    • pp.519-526
    • /
    • 2022
  • 능동형 전자식 개인피폭선량는 개인의 피폭 선량을 실시간으로 확인할 수 있는 장점을 가진 보조선량계이다. 하지만 국내에 사용되고 있는 다수의 능동형 개인피폭 선량계는 의료기관에서 사용하는 진단방사선 영역에서 큰 오차와 낮은 응답성을 가진다. 이에 본 연구에서는 Si 포토다이오드 검출기를 사용하는 능동형 전자식 개인선량계에서 저에너지 영역의 응답특성을 향상시키기 위한 에너지 보상 두께를 평가하였다. 40 kVp에서 80 kVp 영역에서는 Al 0.2 mm + Sn 1.0 mm 필터에서 우수한 응답특성을 보였고 80 kVp에서 120 kVp 영역에서는 Al 0.2 mm + Sn 1.6 mm 필터에서 우수한 응답특성을 보였다.

생체조직내 레이저 광 밀도 향상을 위한 압력 인가형 저출력 레이저 프로브 (A Pressure Applied Low-Level Laser Probe to Enhance Laser Photon Density in Soft Tissue)

  • 여창민;박정환;손태윤;이용흠;정병조
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권1호
    • /
    • pp.18-22
    • /
    • 2009
  • Laser has been widely used in various fields of medicine. Recently, noninvasive low-level laser therapeutic medical devices have been introduced in market. However, low-level laser cannot deliver enough photon density to expect positive therapeutic results in deep tissue layer due to the light scattering property in tissue. In order to overcome the limitation, this study was aimed to develop a negative pressure applied low-level laser probe to optimize laser transmission pattern and therefore, to improve photon density in soft tissue. In order to evaluate the possibility of clinical application of the developed laser probe, ex-vivo experiments were performed with porcine skin samples and laser transmissions were quantitatively measured as a function of tissue compression. The laser probe has an air suction hole to apply negative pressure to skin, a transparent plastic body to observe variations of tissue, and a small metallic optical fiber guide to support the optical fiber when negative pressure was applied. By applying negative pressure to the laser probe, the porcine skin under the metallic optical fiber guide is compressed down and, at the same time, low-level laser is emitted into the skin. Finally, the diffusion images of laser in the sample were acquired by a CCD camera and analyzed. Compared to the peak intensity without the compression, the peak intensity of laser increased about $2{\sim}2.5$ times and FWHM decreased about $1.67{\sim}2.85$ times. In addition, the laser peak intensity was positively and linearly increased as a function of compression. In conclusion, we verified that the developed low-level laser probe can control the photon density in tissue by applying compression, and therefore, its potential for clinical applications.

Radiation mechanism of gamma-ray burst prompt emission

  • 엄정휘
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.49.3-50
    • /
    • 2015
  • Synchrotron radiation of relativistic electrons is an important radiation mechanism in many astrophysical sources. In the sources where the synchrotron cooling timescale is shorter than the dynamical timescale, electrons are cooled down below the minimum injection energy. It has been believed that such fast-cooling electrons have a power-law distribution in energy with an index -2, and their synchrotron radiation has a photon spectral index -1.5. On the other hand, in a transient expanding astrophysical source, such as a gamma-ray burst (GRB), the magnetic field strength in the emission region continuously decreases with radius. Here we study such a system, and find that in a certain parameter regime, the fast-cooling electrons can have a harder energy spectrum. We apply this new physical regime to GRBs, and suggest that the GRB prompt emission spectra whose low-energy photon spectral index has a typical value -1 could be due to synchrotron radiation in this moderately fast-cooling regime.

  • PDF

Near-IR Quantum Cutting Phosphors: A Step Towards Enhancing Solar Cell Efficiency

  • Jadhav, Abhijit P.;Khan, Sovann;Kim, Sun Jin;Cho, So-Hye
    • Applied Science and Convergence Technology
    • /
    • 제23권5호
    • /
    • pp.221-239
    • /
    • 2014
  • The global demand for energy has been increasing since past decades. Various technologies have been working to find a suitable alternative for the generation of sustainable energy. Photovoltaic technologies for solar energy conversion represent one of the significant routes for the green and renewable energy production. Despite of remarkable improvement in solar cell technologies, the generation of power is still suffering with lower energy conversion efficiency, high production cost, etc. The major problem in improving the PV efficiency is spectral mismatch between the incident solar spectrum and bandgap of a semiconductor material used in solar cell. Luminescent materials such as rare-earth doped phosphor materials having the quantum efficiency higher than unity can be helpful for photovoltaic applications. Quantum cutting phosphors are the most suitable candidates for the generation of two or more low-energy photons for the absorption of every incident high-energy photons. The phosphors which are capable of converting UV photon to visible and near-IR (NIR) photon are studied primarily for photovoltaic applications. In this review, we will survey various near IR quantum cutting phosphors with respective to their synthesis method, energy transfer mechanism, nature of activator, sensitizer and dopant materials incorporation and energy conversion efficiency considering their applications in photovoltaics.

Feasibility of clay-shielding material for low-energy photons (Gamma/X)

  • Tajudin, S.M.;Sabri, A.H.A.;Abdul Aziz, M.Z.;Olukotun, S.F.;Ojo, B.M.;Fasasi, M.K.
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1633-1637
    • /
    • 2019
  • While considering the photon attenuation coefficient (${\mu}$) and its related parameters for photons shielding, it is necessary to account for its transmitted and reflected photons energy spectra and dose contribution. Monte Carlo simulation was used to study the efficiency of clay ($1.99g\;cm^{-3}$) as a shielding material below 150 keV photon. Am-241 gamma source and an X-ray of 150 kVp were calculated. The calculated value of ${\mu}$ for Am-241 is higher within 5.61% compared to theoretical value for a single-energy photon. The calculated half-value layer (HVL) is 0.9335 cm, which is lower than that of ordinary concrete for X-ray of 150 kVp. A thickness of 2 cm clay was adequate to attenuate 90% and 85% of the incident photons from Am-241 and X-ray of 150 kVp, respectively. The same thickness of 2 cm could shield the gamma source dose rate of Am-241 (1 MBq) down to $0.0528{\mu}Sv/hr$. For X-ray of 150 kVp, photons below 60 keV were significantly decreased with 2 cm clay and a dose rate reduction by ~80%. The contribution of reflected photons and dose from the clay is negligible for both sources.

제만 효과를 이용한 저온 원자빔 (Cold Atomic Beam Extracted by Zeeman Effect)

  • Kim, Kihwan;Noh, Heung-Ryoul;Wonho Jhe
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2001년도 제12회 정기총회 및 01년도 동계학술발표회
    • /
    • pp.250-251
    • /
    • 2001
  • There is a considerable interest in the generation of a cold atomic beam having a narrow velocity spread that can be used in various experiments in physics such as ultrahigh resolution atomic and molecular spectroscopy, atom optics, atom interferometry, study of solid surfaces, and low energy collision experiments. The invention of the techniques of laser cooling has stimulated developments in the production of cold and bright atomic beams. (omitted)

  • PDF