• Title/Summary/Keyword: Low-Energy Algorithm

Search Result 519, Processing Time 0.029 seconds

Electromagnetic design and optimization of the multi-segment dielectric-loaded accelerating tube using genetic algorithm

  • M. Nikbakht;H. Afarideh;M. Ghergherehchi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4625-4635
    • /
    • 2022
  • A low-energy dielectric loaded accelerator with a non-uniform, multi-segment structure is studied and optimized. So far, no analytical solution is provided for such structures. Also, due to the existing nonlinear behavior and a large number of geometric parameters, the problem of numerical optimizations is complex. For this reason, a method is presented to design and optimize such structures using the Genetic Algorithm (GA). Moreover, the GA output results are compared with Trust Region (TR) and Nelder-Mead Simplex (NMS) methods. Comparative results show that the GA is more efficient in achieving optimization goals and also has a higher speed than the two other methods. Finally, an optimized accelerating tube is integrated into a proper coupler. Then, the accelerator is simulated for full electromagnetic investigations using the CST suite of codes. This design leads to a structure with a power of about 80 kW in the X-band, which delivers electrons to the output energy in the range of 300-459 kV. The length and outer diameter of the accelerating tube obtained are 10 cm and 1 cm, respectively.

A Study on Optimal Operation of Summer Season Cooling System with Numbers of Heat Pumps (다수의 히트펌프로 구성된 냉난방시스템에서 하절기 히트펌프의 최적운전에 관한 연구)

  • Shin, Kwan-Woo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.1
    • /
    • pp.35-40
    • /
    • 2006
  • Heat-pump system has a special feature that provides heating operation in winter season and cooling operation in summer season with a single system. It also has a merit that absorbs and makes use of wastewater heat, terrestrial heat, and heat energy from the air. Because heat-pump system uses midnight electric power, it decreases power peak load and is very economical as a result. By using the property that energy source is converted to low temperature when losing the heat, high temperature energy source is used to provide heating water and low temperature energy source is used to provide cooling water simultaneously in summer season. This study made up a heat-pump system with 4 air heat sources and a water heat source and implemented the optimal operation algorithm that works with numbers of heat pumps to operate them efficiently. With the heat-pump system, we applied it to cooling and heating operation in summer season operation mode in a real building.

3kW multi-string photovoltaic inverter design and simulation (3kW 멀티스트링 태양광 인버터 설계 및 시뮬레이션)

  • Lee, Jong-In;Yu, Beyng-Gyu;Yu, Gwen-Jong;Kim, Heung-Geun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.371-376
    • /
    • 2009
  • The Power Conditioning System is Power Transfer System which make array DC current to the Grid sinusoidal current. These are Low Frequency Transformer Inverter Type, High Frequency Transformer Inverter Type and Transformer-less Type. Low Frequency Transformer Type has a Excellent Isolation property, but doesn't have competitiveness in Size and Cost. Also High Frequency Transformer Type has a good Isolation property but there are many steps in Power transfer Switching. Nowadays, Transformer-less Type inverter change a transformer to DC/DC Converter which is small and cost effective. In this paper shown the DC/DC Converter Transformer-less Type multi-string inverter design and simulation. The Control Algorithm will be introduced and Simulation was accomplished.

  • PDF

Neural Network Modeling of Ion Energy Impact on Surface Roughness of SiN Thin Films (신경망을 이용한 SiN 박막 표면거칠기에의 이온에너지 영향 모델링)

  • Kim, Byung-Whan;Lee, Joo-Kong
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.3
    • /
    • pp.159-164
    • /
    • 2010
  • Surface roughness of deposited or etched film strongly depends on ion bombardment. Relationships between ion bombardment variables and surface roughness are too complicated to model analytically. To overcome this, an empirical neural network model was constructed and applied to a deposition process of silicon nitride (SiN) films. The films were deposited by using a pulsed plasma enhanced chemical vapor deposition system in $SiH_4$-$NH_4$ plasma. Radio frequency source power and duty ratio were varied in the range of 200-800 W and 40-100%. A total of 20 experiments were conducted. A non-invasive ion energy analyzer was used to collect ion energy distribution. The diagnostic variables examined include high (or) low ion energy and high (or low) ion energy flux. Mean surface roughness was measured by using atomic force microscopy. A neural network model relating the diagnostic variables to the surface roughness was constructed and its prediction performance was optimized by using a genetic algorithm. The optimized model yielded an improved performance of about 58% over statistical regression model. The model revealed very interesting features useful for optimization of surface roughness. This includes a reduction in surface roughness either by an increase in ion energy flux at lower ion energy or by an increase in higher ion energy at lower ion energy flux.

A Study on Indoor Positioning Algorithm using Combining WiFi and Beacon on Smart Phone (스마트폰 기반의 WiFi와 Beacon을 결합한 실내위치측위 알고리즘 연구)

  • Lee, Jun-hyeon;Lee, Jae-Pil;Lee, Jae-Gwang;Mo, Eun-Su;Lee, Jae-Kwang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.298-300
    • /
    • 2015
  • Beacon is a signal device, which mainly used to support the safety of the locate and operation of a watercraft and aircraft. Recently, the IT sector BLE (Bluetooth Low Energy) also made possible to operate with less energy over several months using a beacon standards are applied. In addition, the location-based services and technologies using BLE Beacon has attracted attention. However, there is the problem that by using only the position location Beacon devices when high error rate can be measured accurate position. Therefore, in this paper, combines WiFi and Beacon based on Smartphone. Also propose an indoor positioning algorithm reduces the error rate of the position location value.

  • PDF

Energy Efficient Cooperative LEACH Protocol for Wireless Sensor Networks

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.358-365
    • /
    • 2010
  • We develop a low complexity cooperative diversity protocol for low energy adaptive clustering hierarchy (LEACH) based wireless sensor networks. A cross layer approach is used to obtain spatial diversity in the physical layer. In this paper, a simple modification in clustering algorithm of the LEACH protocol is proposed to exploit virtual multiple-input multiple-output (MIMO) based user cooperation. In lieu of selecting a single cluster-head at network layer, we proposed M cluster-heads in each cluster to obtain a diversity order of M in long distance communication. Due to the broadcast nature of wireless transmission, cluster-heads are able to receive data from sensor nodes at the same time. This fact ensures the synchronization required to implement a virtual MIMO based space time block code (STBC) in cluster-head to sink node transmission. An analytical method to evaluate the energy consumption based on BER curve is presented. Analysis and simulation results show that proposed cooperative LEACH protocol can save a huge amount of energy over LEACH protocol with same data rate, bit error rate, delay and bandwidth requirements. Moreover, this proposal can achieve higher order diversity with improved spectral efficiency compared to other virtual MIMO based protocols.

A Low-Power Clustering Algorithm Based on Fixed Radio Wave Radius in WSN (WSN에서 전파범위 기반의 저 전력 클러스터링 알고리즘)

  • Rhee, Chung Sei
    • Convergence Security Journal
    • /
    • v.15 no.3_1
    • /
    • pp.75-82
    • /
    • 2015
  • Recently, lot of researches on multi-level protocol have been done to balance the sensor node energy consumption of WSN and to improve the node efficiency to extend the life of the entire network. Especially in multi-hop protocol, a variety of models have been studied to improve energy efficiency and apply it in real system. In multi-hop protocol, we assume that energy consumption can be adjusted based on the distance between the sensor nodes. However, according to the physical property of the actual WSN, it's hard to establish this. In this paper, we propose low-power sub-cluster protocol to improve the energy efficiency based on the spread of distance. Compared with the previous protocols, the proposed protocol is energy efficient and can be effectively used in the wireless sensing network.

A Low-Computation Indirect Model Predictive Control for Modular Multilevel Converters

  • Ma, Wenzhong;Sun, Peng;Zhou, Guanyu;Sailijiang, Gulipali;Zhang, Ziang;Liu, Yong
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.529-539
    • /
    • 2019
  • The modular multilevel converter (MMC) has become a promising topology for high-voltage direct current (HVDC) transmission systems. To control a MMC system properly, the ac-side current, circulating current and submodule (SM) capacitor voltage are taken into consideration. This paper proposes a low-computation indirect model predictive control (IMPC) strategy that takes advantages of the conventional MPC and has no weighting factors. The cost function and duty cycle are introduced to minimize the tracking error of the ac-side current and to eliminate the circulating current. An optimized merge sort (OMS) algorithm is applied to keep the SM capacitor voltages balanced. The proposed IMPC strategy effectively reduces the controller complexity and computational burden. In this paper, a discrete-time mathematical model of a MMC system is developed and the duty ratio of switching state is designed. In addition, a simulation of an eleven-level MMC system based on MATLAB/Simulink and a five-level experimental setup are built to evaluate the feasibility and performance of the proposed low-computation IMPC strategy.

The Dynamic Allocation Algorithm for Efficient Data Transmission in Wireless Sensor Network (무선 센서 네트워크에서 효율적인 데이터 전송을 위한 동적 할당 알고리즘)

  • Kim, Ji-Won;Yoon, Wan-Oh;Kim, Kang-Hee;Hong, Chang-Ki;Choi, Sang-Bang
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.3
    • /
    • pp.62-73
    • /
    • 2012
  • IEEE 802.15.4 standard which has low-speed, low-power, low-cost can be efficiently used in wireless sensor network environment. Among various topologies used in IEEE 802.15.4 standard, a cluster-tree topology which has many nodes in it, transmit delay, energy consumption and data loss due to traffic concentration around the sink node. In this paper, we propose the MRS-DCA algorithm that minimizes conflicts between packets for efficient data transmission, and dynamically allocates the active period for efficient use of limited energy. The MRS-DCA algorithm allocates RP(Reservation Period) to the active period of IEEE 802.15.4 and guarantees reliable data transmission by allocating RP and CAP dynamically which is based on prediction using EWMA. The comparison result shows that the MRS-DCA algorithm reduces power consumption by reducing active period, and increasing transmission rate by avoiding collision.

Person Recognition Using Gait and Face Features on Thermal Images (열 영상에서의 걸음걸이와 얼굴 특징을 이용한 개인 인식)

  • Kim, Sa-Mun;Lee, Dae-Jong;Lee, Ho-Hyun;Chun, Myung-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.130-135
    • /
    • 2016
  • Gait recognition has advantage of non-contact type recognition. But It has disadvantage of low recognition rate when the pedestrian silhouette is changed due to bag or coat. In this paper, we proposed new method using combination of gait energy image feature and thermal face image feature. First, we extracted a face image which has optimal focusing value using human body rate and Tenengrad algorithm. Second step, we extracted features from gait energy image and thermal face image using linear discriminant analysis. Third, calculate euclidean distance between train data and test data, and optimize weights using genetic algorithm. Finally, we compute classification using nearest neighbor classification algorithm. So the proposed method shows a better result than the conventional method.