• Title/Summary/Keyword: Low-E glass

Search Result 199, Processing Time 0.025 seconds

Effects of Heat-treatment Condition on the Characteristics of Sintering and Electrical Behaviors of Two NASICON Compounds (열처리조건이 두 NASICON 조성의 소결 및 전기적특성에 미치는 영향)

  • 강희복;조남희;김윤호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.685-692
    • /
    • 1997
  • Effects of sintering temperature and time on the phase formation, the characteristics of sintering and electrical behaviors of NASICON compounds with Na3Zr2Si2PO12 and Na3.2Zr1.3Si2.2P0.8O10.5 compositions synthesized by solid state reaction were investigated. Maximum relative densities of 96% and 91% were obtained for Na3Zr2Si2PO12 and Na3.2Zr1.3Si2.2P0.8O10.5 compounds, respectively. Complex impedance analysis in a frequency range below 4 MHz was performed to measure the ionic conductivity and migration barrier height of the compounds at RT-30$0^{\circ}C$. The maximum ionic conductivity and the minimum migration barrier height were 0.45 ohm-1cm-1 and 0.07 eV, respectively. The migration barrier height of the high temperature form (space group : R3c) is about 30-40% of that of the low temperature form (space group : C2/c) in two NASICON compounds. Ionic conductivity increases with increasing sinterability, and the presence of glass phase in Na3.2Zr1.3Si2.2P0.8O10.5 compounds lowers significantly ionic conductivity at temperatures above 14$0^{\circ}C$.

  • PDF

Electrical and optical Properties $SiO_2$ doped ZnO film transparent conductive oxide(TCO)

  • Bae, Kang;Ryu, Sung-Won;Hong, Jae-Suk;Park, Jeong-Sik;Park, Seoung-Hwan;Kim, Hwa-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1437-1439
    • /
    • 2009
  • Electrical and optical properties of $SiO_2$-doped ZnO (SZO) films on the corning 7059 glass substrates by using rfmagnetron sputtering method are investigated. The deposition rate becomes maximum near 3 wt.% and gradually decreases when the $SiO_2$ content further increases. The growth rates at 3 wt.% is $4^{\circ}$A/s. We found that the average transmittance of all films is over 80% in the wavelength range above 500 nm. The optical band gap decreases from 3.52 to 3.33 eV with an increase in thickness. X-ray diffraction patterns show that the film with a relatively low $SiO_2$ content (< 4 wt.%) is amorphous. SZO films at the $SiO_2$ contents of 2 wt.% shows the resistivity of about $3.8{\times}10^{-3}{\cdot}cm$. The sheet resistance decreases with increasing the heat treatment temperature.

  • PDF

Influence of RTA treatments on optical properties of ZnO nanorods synthesized by wet chemical method

  • Shan, Qi;Ko, Y.H.;Lee, H.K.;Yu, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.190-190
    • /
    • 2010
  • Zinc oxide is the most attractive material due to the large direct band gap (3.37 eV), excellent chemical and thermal stability, and large exciton binding energy (60 meV). Recently, ZnO nanorods were used as the high efficient antireflection coating layer of solar cells based on silicon (Si). In this reports, we studied the effects of rapid thermal annealing (RTA) treatment on optical properties of ZnO nanorods. For fabrication of ZnO nanorods, there are many methods such as hydrothermal method, sol-gel method, and metal organic chemical vapor deposition method. Among of them, we used the conventional wet chemical method which is simple and low temperature growth. In order to synthesize the ZnO nanorods, the ZnO films were deposited on Si substrate by RF magnetron sputtering at room temperature and the samples were dipped to aqua solution containing the zinc nitrate and hexamethylentetramines (HMT). The synthesis process was achieved in keeping with temperature of $90-95^{\circ}C$ and under constant stirring. The morphology of ZnO nanorods on glass and Si was characterized by scanning electron microscopy. For the analysis of antireflection performance, the reflectance and transmittance were measured by spectrophotometer. And for analyzing the effects of RTA treatment on ZnO nanorods, crystalline properties were investigated by X-ray diffraction measurements and optical properties was estimated by photoluminescence spectra.

  • PDF

Optimization of structural elements of transport vehicles in order to reduce weight and fuel consumption

  • Kovacs, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.283-290
    • /
    • 2019
  • In global competition manufacturing companies have to produce modern, new constructions from advanced materials in order to increase competitiveness. The aim of my research was to develop a new composite cellular plate structure, which can be primarily used for structural elements of road, rail, water and air transport vehicles (e.g. vehicle bodies, ship floors). The new structure is novel and innovative, because all materials of the components of the newly developed structure are composites (laminated Carbon Fiber Reinforced Plastic (CFRP) deck plates with pultruded Glass Fiber Reinforced Plastic (GFRP) stiffeners), furthermore combines the characteristics of sandwich and cellular plate structures. The material of the structure is much more advantageous than traditional steel materials, due mainly to its low density, resulting in weight savings, causing lower fuel consumption and less environmental damage. In the study the optimal construction of a given geometry of a structural element of a road truck trailer body was defined by single- and multi-objective optimization (minimal cost and weight). During the single-objective optimization the Flexible Tolerance Optimization method, while during the multi-objective optimization the Particle Swarm Optimization method were used. Seven design constraints were considered: maximum deflection of the structure, buckling of the composite plates, buckling of the stiffeners, stress in the composite plates, stress in the stiffeners, eigenfrequency of the structure, size constraint for design variables. It was confirmed that the developed structure can be used principally as structural elements of transport vehicles and unit load devices (containers) and can be applied also in building construction.

Assessment of DVC measurement uncertainty on GFRPs with various fiber architectures

  • Bartulovic, Ante;Tomicevic, Zvonimir;Bubalo, Ante;Hild, Francois
    • Coupled systems mechanics
    • /
    • v.11 no.1
    • /
    • pp.15-32
    • /
    • 2022
  • The comprehensive understanding of the fiber reinforced polymer behavior requires the use of advanced non-destructive testing methods due to its heterogeneous microstructure and anisotropic mechanical proprieties. In addition, the material response under load is strongly associated with manufacturing defects (e.g., voids, inclusions, fiber misalignment, debonds, improper cure and delamination). Such imperfections and microstructures induce various damage mechanisms arising at different scales before macrocracks are formed. The origin of damage phenomena can only be fully understood with the access to underlying microstructural features. This makes X-ray Computed Tomography an appropriate imaging tool to capture changes in the bulk of fibrous materials. Moreover, Digital Volume Correlation (DVC) can be used to measure kinematic fields induced by various loading histories. The correlation technique relies on image contrast induced by microstructures. Fibrous composites can be reinforced by different fiber architectures that may lead to poor natural contrast. Hence, a priori analyses need to be performed to assess the corresponding DVC measurement uncertainties. This study aimed to evaluate measurement resolutions of global and regularized DVC for glass fiber reinforced polymers with different fiber architectures. The measurement uncertainties were evaluated with respect to element size and regularization lengths. Even though FE-based DVC could not reach the recommended displacement uncertainty with low spatial resolution, regularized DVC enabled for the use of fine meshes when applying appropriate regularization.

A Study on the Optical Transmittance of High-energy Electron-beam Irradiated IGZO Thin Films (고 에너지 전자빔 조사된 IGZO 박막의 광 투과도에 대한 연구)

  • Yun, Eui-Jung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.71-77
    • /
    • 2014
  • In this paper, we investigated the effects of high-energy electron beam irradiation (HEEBI) on the optical transmittance of InGaZnO (IGZO) films grown on transparent Corning glass substrates, with a radio frequency magnetron sputtering technique. The IGZO thin films deposited at low temperature were treated with HEEBI in air at room temperature (RT) with an electron beam energy of 0.8 MeV and doses of $1{\times}10^{14}-1{\times}10^{16}electrons/cm^2$. The optical transmittance of the IGZO films was measured using an ultraviolet visible near-infrared spectrophotometer (UVVIS). The detailed estimation process for separating the transmittance of HEEBI-treated IGZO films from the total transmittance of IGZO films on transparent substrates treated with HEEBI is given in this paper. Based on the experimental results, we concluded that HEEBI with an appropriate dose of $10^{14}electrons/cm^2$ causes a maximum increase in the transparency of IGZO thin films. We also concluded that HEEBI treatment with an appropriate dose shifted the optical band gap ($E_g$) toward the lower energy region from 3.38 to 3.31 eV. This $E_g$ shift suggested that HEEBI in air at RT with an appropriate dose acts like a thermal annealing treatment in vacuum at high temperature.

Measurement uncertainty analysis of radiophotoluminescent glass dosimeter reader system based on GD-352M for estimation of protection quantity

  • Kim, Jae Seok;Park, Byeong Ryong;Yoo, Jaeryong;Ha, Wi-Ho;Jang, Seongjae;Jang, Won Il;Cho, Gyu Seok;Kim, Hyun;Chang, Insu;Kim, Yong Kyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.479-485
    • /
    • 2022
  • At the Korea Institute of Radiological and Medical Sciences, physical human phantoms were developed to evaluate various radiation protection quantities, based on the mesh-type reference computational phantoms of the International Commission on Radiological Protection. The physical human phantoms were fabricated such that a radiophotoluminescent glass dosimeter (RPLGD) with a Tin filter, namely GD-352M, could be inserted into them. A Tin filter is used to eliminate the overestimated signals in low-energy photons below 100 keV. The measurement uncertainty of the RPLGD reader system based on GD-352M should be analyzed for obtaining reliable protection quantities before using it for practical applications. Generally, the measurement uncertainty of RPLGD systems without Tin filters is analyzed for quality assurance of radiotherapy units using a high-energy photon beam. However, in this study, the measurement uncertainty of GD-352M was analyzed for evaluating the protection quantities. The measurement uncertainty factors in the RPLGD include the reference irradiation, regression curve, reproducibility, uniformity, energy dependence, and angular dependence, as described by the International Organization for Standardization (ISO). These factors were calculated using the Guide to the Expression of Uncertainty in Measurement method, applying ISO/ASTM standards 51261(2013), 51707(2015), and SS-ISO 22127(2019). The measurement uncertainties of the RPLGD reader system with a coverage factor of k = 2 were calculated to be 9.26% from 0.005 to 1 Gy and 8.16% from 1 to 10 Gy. A blind test was conducted to validate the RPLGD reader system, which demonstrated that the readout doses included blind doses of 0.1, 1, 2, and 5 Gy. Overall, the En values were considered satisfactory.

Photo-catalytic Characteristics of Sol-Gel Synthesized TiO2 Thin Film (졸-겔법을 이용한 TiO2 박막의 광촉매 특성)

  • Choi, Kyu-Man;Kim, Yeo-Hwan;Lim, Hae-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.846-849
    • /
    • 2013
  • Thin film of $TiO_2$ was obtained by the sol-gel dip method on the brosilicate glass substrate. It was found that the film was about $1.5{\mu}m$ thick as obtained by 4 successive coatings and annealed at varied temperatures ranged from $300^{\circ}C$ to $1100^{\circ}C$ for 2 hrs. The substrate used was having the surface area of $100mm^2$. Increasing the annealing temperature caused to change in mineralogical phase of titanium oxide i.e., amorphous, crystalline antase to rutile phases. The particle size of the titanium oxide film were ranged from $0.1{\sim}0.54{\mu}m$ estimated by the SEM analysis. The material showed an absorbance maximum at the wavelength 390nm obtained by UV-visible spectrophotometer. These results therefore, indicated that the $TiO_2$ film obtained relatively at low annealing temperature consisted predominantly with anatase phase; possessed higher photocatalytic behavior i.e., 2.4 times higher than that of only UV lamp irradiation.

Study of the Nitrogen-Beam Irradiation Effects on ALD-ZnO Films (ALD로 성장된 ZnO박막에 대한 질소이온 조사효과)

  • Kim, H.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.384-389
    • /
    • 2009
  • ZnO, a wurtzite lattice structure, has attracted much attention as a promising material for light-emitting diodes (LEDs) due to highly efficient UV emission resulting from its large band gap of 3.37 eV, large exciton binding energy of 60 meV, and low power threshold for optical pumping at room temperature. For the realization of LEDs, both n-type ZnO and p-type ZnO are required. Now, n-type ZnO for practical applications is available; however, p-type ZnO still has many drawbacks. In this study, ZnO films were grown on glass substrates by using atomic layer deposition (ALD) and the ZnO films were irradiated by nitrogen ion beams (20 keV, $10^{13}{\sim}10^{15}ions/cm^2$). The effects of nitrogen-beam irradiation on the ZnO structure as well as the electrical property were investigated by using fieldemission scanning electron microscopy (FESEM) and Hall-effect measurement.

Thermal and Mechanical Properties of Short Fiber-Reinforced Epoxy Composites (단섬유 강화 에폭시 복합재료의 열적/기계적 특성)

  • Huang, Guang-Chun;Lee, Chung-Hee;Lee, Jong-Keun
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.530-536
    • /
    • 2009
  • A cycloaliphatic epoxy/acidic anhydride system incorporating short carbon fibers (SCF) and short glass fibers (SGF) was fabricated and thermal/mechanical properties were characterized. At low filler content both SCF- and SGF-reinforced composites showed a similar decrease in coefficient of thermal expansion (CTE), measured by a thermomechanical analyzer, with increasing loadings, above which SCF became more effective than SGF at reducing the CTE. Experimental CTE data for the SCF-reinforced composites is best described by the rule of mixtures at lower SCF contents and by the Craft-Christensen model at higher SCF contents. Storage modulus (E') at $30^{\circ}C$ and $180^{\circ}C$ was greatly enhanced for short fiber-filled composites compared to unfilled specimens, Scanning electron microscopy of the fracture surfaces indicated that the decreased CTE and the increased E' of the short fiber-reinforced composites resulted from good interfacial adhesion between the fibers and epoxy matrix.