• 제목/요약/키워드: Low temperature test

검색결과 1,938건 처리시간 0.031초

Winding Temperature Measurement in a 154 kV Transformer Filled with Natural Ester Fluid

  • Kweon, Dongjin;Koo, Kyosun
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.156-162
    • /
    • 2013
  • This paper measures the hot spot temperatures in a single-phase, 154 kV, 15/20 MVA power transformer filled with natural ester fluid using optical fiber sensors and compares them with those calculated by conventional heat run tests. A total of 14 optical fiber sensors were installed on the high-voltage and low-voltage windings to measure the hot spot temperatures. In addition, three thermocouples were installed in the transformer to measure the temperature distribution during the heat run tests. In the low-voltage winding, the hot spot temperature was $108.4^{\circ}C$, calculated by the conventional heat run test. However, the hot spot temperature measured using the optical fiber sensor was $129.4^{\circ}C$ between turns 2 and 3 on the upper side of the low-voltage winding. Therefore, the hot spot temperature of the low-voltage winding measured using the optical fiber sensor was $21.0^{\circ}C$ higher than that calculated by the conventional heat run test.

빙해선박 강재의 저온 소성경화 구성방정식 (Low Temperature Plastic Hardening Constitutive Equation for Steels of Polar Class Vessels)

  • 민덕기;허영미;조상래
    • 대한조선학회논문집
    • /
    • 제49권3호
    • /
    • pp.227-231
    • /
    • 2012
  • In this study, a plastic hardening constitutive equation for steels of polar class vessels at low temperature is proposed. The equation was derived using the experimental data obtained from tensile tests at room and low temperatures. Tensile tests at low temperature are both costly and time consuming because an expensive cold chamber is necessary and it takes too much time to cool down a specimen to set temperature. Using the proposed plastic hardening constitutive equation the plastic hardening characteristics of steels for polar class vessels at low temperature can be easily predicted from the tensile test results at room temperature.

저온 태양열을 이용한 생물학적 오수 처리 장치 실증 실험 (Field Test for a Biological Nitrogen Treatment System with Low Temperature Solar Thermal Energy)

  • 정모;이동원
    • 한국태양에너지학회 논문집
    • /
    • 제28권2호
    • /
    • pp.34-41
    • /
    • 2008
  • A low-temperature solar thermal system assisting a biological nitrogen treatment reservoir was designed and field-tested. A large tank whose temperature was maintained at about $25-30^{\circ}C$ to enhance the performance of a biological nitrogen treatment process was heated by an array of flat plate solar collectors. Test results revealed that the overall collector efficiency was above 50% for the most cases tested. This high efficiency was possible owing to the relatively low collector temperature that can be traced back to the reservoir temperature. A substantial enhancement in nitrogen treatment was observed as a result of maintaining the reservoir temperature higher.

전부도재 수복을 위한 무색지르코니아 세라믹의 저온열화에 따른 굴곡강도 변화 (The flexural strength Changes by the Low Temperature Degradation of Uncolored zirconia Ceramic for All Ceramic Restoration)

  • 김정숙
    • 대한치과기공학회지
    • /
    • 제31권2호
    • /
    • pp.39-44
    • /
    • 2009
  • In the orthopedic field which firstly used zirconia as artificial joints, researchers had studied the reasons for collapsing zirconia used as restorative material by accumulated inner cracks in several years and they found out Low Temperature Degradation is one of the reasons. In the dentistry field, it has not been too long since they used zirconia as the cores of all-ceramic restoration; however, the study is needed as prophylactic measure against Low Temperature Degradation which can be caused by saliva wetting the mouth all the time and frictional forces such as bite pressure and masticatory pressure. Artificial aging by autoclaving is used because there are difficulties of testing in the patient's mouth. To study the changes in the material properties, the flexural strength of dental zirconia ceramic is measured before and after the test. The following are the result of the test. 1) The zirconia blocks in the autoclaves at $130^{\circ}C$ and $200^{\circ}C$ are phase-shifted tetragonal to monoclinic by Low Temperature Degradation. 2)The non-autoclaved specimens have the average fractural strength of 1346.4MPa, the specimens autoclaved at $130^{\circ}C$ have 1226.4Mpa and the specimens autoclaved at $200^{\circ}C$ have 1024.1MPa. The tests show that as the temperature increases, the flexural strength tend to decrease and the differences are noticeable(p<0.001). 3)Through the Duncan's post-hoc test, the differences in flexural strength of the 3 groups were listed in order of strength like normal temperature>at $130^{\circ}C$ autoclave low temperature degradation> at $200^{\circ}C$ autoclave low temperature degradation.

  • PDF

50 kVA 주상용 몰드변압기의 설계 및 특성평가 (The Design and Performance Test of Mold Transformer for Outdoor Pole)

  • 조한구;이운용;황보국
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.132-137
    • /
    • 2002
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss. The life of transformer is significantly dependent on the thermal behavior in windings. To analyse winding temperature rise, many transformer designer have calculated temperature distribution and hot spot point by finite element method(FEM). Recently, numerical analyses of transformer are studied for optimum design, that is electric field analysis, magnetic field, potential vibration, thermal distribution and thermal stress. In this paper, the temperature distribution of 50 kVA pole mold transformer for power distribution are investigated by FEM program and the temperature rise test of designed mold transformer carried out and test result is analyzed compare to simulation data. In this result, the designed mold transformer is satisfied to limit value of temperature and the other property is good such as voltage ratio, winding resistance, no-load loss, load loss, impedance voltage and percent regulation.

  • PDF

XKT-1(수출형 KT-1) 항공기 열 환경시험에 관한 연구 (Study on Thermal Environmental Test for XKT-1 (KT-1 Export Version) Aircraft)

  • 김진석
    • 항공우주시스템공학회지
    • /
    • 제15권3호
    • /
    • pp.105-113
    • /
    • 2021
  • 본 논문은 MIL-STD-810 시험법 501(고온 시험법)과 시험법 502(저온 시험법)를 기반으로 XKT-1(수출형 KT-1) 항공기 고객의 운용 환경과 요구사항에 적합하도록 시험조건과 시험절차를 최적화하여 열 환경시험 프로파일을 제시하였다. 또한, 이렇게 최적화된 고온 및 저온시험 프로파일을 환경시험 종합평가 계획서에 반영하여 국방과학연구소의 기후환경 챔버에서 시험수행 하였다. 본 고온 및 저온 환경시험 프로파일로 XKT-1(수출형 KT-1) 항공기의 고온 및 저온 환경시험수행 결과, 고객 환경 요구사항을 만족하고 혹독한 열 환경에서 신뢰성 있음을 확인하였다. 특히 본 논문에서 제안된 고온 및 저온 환경시험절차와 프로파일은 더 혹독한 환경시험 조건의 수출형 항공기 환경시험에도 응용할 수 있다.

저속충격시험을 이용한 고체추진제의 동적 응력-변형률 특성 연구 (Study on the Dynamic Stress-Strain Behavior of Solid Propellant Using Low-Velocity Impact Test)

  • 황재민;고은수;조현준;김인걸;김재훈
    • 한국항공우주학회지
    • /
    • 제49권10호
    • /
    • pp.813-820
    • /
    • 2021
  • 본 연구에서는 고체추진제의 동적 응력-변형률 특성을 고찰하기 위하여 저속충격시험을 수행하였다. 저속충격시험 시 충격체(Impactor)의 하중, 변위를 측정하여 고체추진제의 동적 거동을 확인하였다. 3점 굽힘 형태의 저속충격시험을 수행하였고, 이때 발생하는 국소변위와 길이가 짧고 두께가 두꺼운 고체추진제 시편의 전단 변위를 보상하여 순수 굽힘변위를 계산하였다. 보상된 변위와 측정된 하중을 사용하여 응력과 변형률을 계산하였고 응력-변형률 곡선으로부터 고체추진제의 동적 물성을 획득하여 이를 정적 굽힘 물성과 비교하였다. 운용 환경에 따른 온도별 고체추진제의 동적 물성을 획득하기 위해 상온, 고온, 저온에서 실험을 수행하고 결과를 비교분석하였다.

Sn58Bi Solder Interconnection for Low-Temperature Flex-on-Flex Bonding

  • Lee, Haksun;Choi, Kwang-Seong;Eom, Yong-Sung;Bae, Hyun-Cheol;Lee, Jin Ho
    • ETRI Journal
    • /
    • 제38권6호
    • /
    • pp.1163-1171
    • /
    • 2016
  • Integration technologies involving flexible substrates are receiving significant attention owing the appearance of new products regarding wearable and Internet of Things technologies. There has been a continuous demand from the industry for a reliable bonding method applicable to a low-temperature process and flexible substrates. Up to now, however, an anisotropic conductive film (ACF) has been predominantly used in applications involving flexible substrates; we therefore suggest low-temperature lead-free soldering and bonding processes as a possible alternative for flex-on-flex applications. Test vehicles were designed on polyimide flexible substrates (FPCBs) to measure the contact resistances. Solder bumping was carried out using a solder-on-pad process with Solder Bump Maker based on Sn58Bi for low-temperature applications. In addition, thermocompression bonding of FPCBs was successfully demonstrated within the temperature of $150^{\circ}C$ using a newly developed fluxing underfill material with fluxing and curing capabilities at low temperature. The same FPCBs were bonded using commercially available ACFs in order to compare the joint properties with those of a joint formed using solder and an underfill. Both of the interconnections formed with Sn58Bi and ACF were examined through a contact resistance measurement, an $85^{\circ}C$ and 85% reliability test, and an SEM cross-sectional analysis.

엔진 오일 열화와 피스톤 톱링 그루브 온도가 카본 디포짓 형성에 미치는 영향 Part II-디젤 엔진의 디포짓 형성 특성 (The Effect of Engine Oil Degradation and Piston Top Ring Groove Temperature on Carbon Deposit Formation Part II - The Deposit Formation Characteristics of Diesel Engine)

  • 김중수;민병순;오대윤;최재권
    • Tribology and Lubricants
    • /
    • 제14권4호
    • /
    • pp.108-113
    • /
    • 1998
  • In order to investigate the characteristics of top ring groove deposit formation in diesel engine, engine test and simulation test were performed. From component analysis of used oils sampled from actual running engines, soot content in engine oil was selected as a main parameter for evaluating oil degradation. Deposit formation is highly related to soot content in lubricating oils. And high soot content oil accelerates deposit formation even in low temperature region below 26$0^{\circ}C$. In low temperature region below 26$0^{\circ}C$, deposit formation rate is mainly affected by top ring groove temperature. However, in high temperature region above 26$0^{\circ}C$, deposit formation rate is affected by soot content as well as top ring groove temperature. Therefore, soot content as well as top ring groove temperature should be kept a certain level in order to prevent troubles due to carbon deposit formation.

액체질소에서의 극저온 절연매질의 Warm-up/Cool-down 특성 (Warm-up and Cool-down Characteristics of Cryogenic Insulation Materials in Liquid Nitrogen)

  • 이상화;신우주;;오석호;성재규;이방욱
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.119-119
    • /
    • 2010
  • Among the various factors influencing the service life of the electric equipment, the performance of dielectric insulation materials has an important role to determine their whole service life. In order to determine the degradation of insulating materials immersed in extremely low temperature media such as liquid nitrogen, the abrupt temperature change from cryogenic to normal room temperature should be considered. But the assessments of low-temperature aging test method for the dielectric materials immersed in liquid nitrogen considering these conditions were not fully reported. Therefore, for the fundamental step to establish the suitable degradation test methods for cryogenic dielectric materials, we focused on the evaluation of ageing test methods for dielectric materials exposed to low temperature environments considering thermal shock by cool-down and warm up test.

  • PDF