• 제목/요약/키워드: Low temperature tabbing process

검색결과 3건 처리시간 0.017초

박형 태양전지모듈 제작을 위한 저온 CP 공정 최적화에 관한 연구 (A Study on the Optimization of CP Based Low-temperature Tabbing Process for Fabrication of Thin c-Si Solar Cell Module)

  • 진가언;송형준;고석환;주영철;송희은;장효식;강기환
    • 한국태양에너지학회 논문집
    • /
    • 제37권2호
    • /
    • pp.77-85
    • /
    • 2017
  • Thin crystalline silicon (C-Si) solar cell is expected to be a low price energy source by decreasing the consumption of Si. However, thin c-Si solar cell entails the bowing and crack issues in high temperature manufacturing process. Thus, the conventional tabbing process, based on high temperature soldering (> $250^{\circ}C$), has difficulties for applying to thin c-Si solar cell modules. In this paper, a conductive paste (CP) based interconnection process has been proposed to fabricate thin c-Si solar cell modules with high production yield, instead of existing soldering materials. To optimize the process condition for CP based interconnection, we compared the performance and stability of modules fabricated under various lamination temperature (120, 150, and $175^{\circ}C$). The power from CP based module is similar to that with conventional tabbing process, as modules are fabricated. However, the output of CP based module laminated at $120^{\circ}C$ decreases significantly (14.1% for Damp heat and 6.1% for thermal cycle) in harsh condition, while the output drops only in 3% in the samples process at $150^{\circ}C$, $175^{\circ}C$. The peel test indicates that the unstable performance of sample laminated at $120^{\circ}C$ is attributed to weak adhesion strength (1.7 N) between cell and ribbon compared to other cases (2.7 N). As a result, optimized lamination temperature for CP based module process is $150^{\circ}C$, considering stability and energy consumption during the fabrication.

전도성 페이스트를 이용한 무연 리본계 PV 모듈의 출력 특성 분석 (Analysis of Output Characteristics of Lead-free Ribbon based PV Module Using Conductive Paste)

  • 윤희상;송형준;고석환;주영철;장효식;강기환
    • 한국태양에너지학회 논문집
    • /
    • 제38권1호
    • /
    • pp.45-55
    • /
    • 2018
  • Environmentally benign lead-free solder coated ribbon (e. g. SnCu, SnZn, SnBi${\cdots}$) has been intensively studied to interconnect cells without lead mixed ribbon (e. g. SnPb) in the crystalline silicon(c-Si) photovoltaic modules. However, high melting point (> $200^{\circ}C$) of non-lead based solder provokes increased thermo-mechanical stress during its soldering process, which causes early degradation of PV module with it. Hence, we proposed low-temperature conductive paste (CP) based tabbing method for lead-free ribbon. Modules, interconnected by the lead-free solder (SnCu) employing CP approach, exhibits similar output without increased resistivity losses at initial condition, in comparison with traditional high temperature soldering method. Moreover, 400 cycles (2,000 hour) of thermal cycle test reveals that the module integrated by CP approach withstands thermo-mechanical stress. Furthermore, this approach guarantees strong mechanical adhesion (peel strength of ~ 2 N) between cell and lead-free ribbons. Therefore, the CP based tabbing process for lead free ribbons enables to interconnect cells in c-Si PV module, without deteriorating its performance.

적외선 램프 가열방식을 이용한 태양전지 셀의 솔더링 공정 및 열처리 조건 별 특성 평가 (Characterization of Soldering Property on Heating Condition by Infrared Lamp Soldering Process for C-Si Photovoltaic Modules)

  • 손형진;이정진;김성현
    • Current Photovoltaic Research
    • /
    • 제4권2호
    • /
    • pp.59-63
    • /
    • 2016
  • A key point of a soldering process for photovoltaic (PV) modules is to increase an adhesive strength leading a low resistivity between ribbon and cell. In this study, we intended to optimize a heating condition for the soldering process and characterize the soldered joint via physical and chemical analysis methods. For the purpose, the heating conditions were adjusted by IR lamp power, heating time and hot plate temperature for preheating a cell. Since then the peel test for the ribbon and cell was conducted, consequently the peel strength data shows that there is some optimum soldering condition. In here, we observed that the peel strength was modified by increasing the heating condition. Such a soldering property is affected by a various factors of which the soldered joint, flux and bus bar of the cell are changed on the heating condition. Therefore, we tried to reveal causes determining the soldering property through analyzing the soldered interface.