• Title/Summary/Keyword: Low temperature liquid

Search Result 896, Processing Time 0.03 seconds

Investigation of ground condition charges due to cryogenic conditions in an underground LNG storage plant (지하 LNG 저장 시험장에서 극저온 환경에 의한 지반상태 변화의 규명)

  • Yi Myeong-Jong;Kim Jung-Ho;Park Sam-Gyu;Son Jeong-Sul
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.67-72
    • /
    • 2005
  • To investigate the feasibility of a new concept of storing Liquefied Natural Gas (LNG) in a lined hard rock cavern, and to develop essential technologies for constructing underground LNG storage facilities, a small pilot plant storing liquid nitrogen (LN2) has been constructed at the Korea Institute of Geoscience and Mineral Resources (KIGAM). The LN2 stored in the cavern will subject the host rock around the cavern to very low temperatures, which is expected to cause the development of an ice ring and the change of ground condition around the storage cavern. To investigate and monitor changes in ground conditions at this pilot plant site, geophysical, hydrogeological, and rock mechanical investigations were carried out. In particular, geophysical methods including borehole radar and three-dimensional (3D) resistivity surveys were used to identify and monitor the development of an ice ring, and other possible changes in ground conditions resulting from the very low temperature of LN2 in the storage tank. We acquired 3D resistivity data before and after storing the LN2, and the results were compared. From the 3D images obtained during the three phases of the resistivity monitoring survey, we delineated zones of distinct resistivity changes that are closely related to the storage of LN2. In these results, we observed a decrease in resistivity at the eastern part of the storage cavern. Comparing the hydrogeological data and Joint patterns around the storage cavern, we interpret this change in resistivity to result from changes in the groundwater flow pattern. Freezing of the host rock by the very low temperature of LN2 causes a drastic change in the hydrogeological conditions and groundwater flow patterns in this pilot plant.

Effects of Additives on Quality Attributes of Minced Ginger During Refrigerated Storage (첨가물이 냉장 중 생강 다대기의 품질특성에 미치는 영향)

  • Choi, Min-Seek;Kim, Dong-Ho;Lee, Kyung-Hae;Lee, Young-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.1048-1056
    • /
    • 2002
  • Quality of fresh ginger deteriorates rapidly during low temperature storage, and its storage life is short due to sprouting and microbial spoilage. The objectives of this research were to develop, using additives, a minced ginger product, which could maintain acceptable quality for over 30 days, and to investigate its quality changes during the cold storage. Storage stability of minced ginger product was investigated from the standpoint of the inhibition of brown discoloration, gas formation and liquid-solid separation. Fresh ginger was peeled and ground to produce minced ginger (control). Sodium bisulfite, L-cysteine, NaCl, sodium benzoate, modified starch, and/or xanthan gum were added to the control to minimize quality loss during storage, and to develop an optimum formula (A) of minced ginger. Samples were packed in Nylon/PE films, stored at $5^{\circ}C$, sampled at a 30-day interval, and subjected to quality evaluations. Changes in pH, surface color, gas formation, liquid-solid separation, contents of free amino acids, free sugars, organic acids, and fatty acids were determined. Gas formation was effectively inhibited in samples with sodium benzoate and/or NaCl. Samples with xanthan gum did not result in liquid-solid separation. L-Cysteine and sodium bisulfite were effective in controlling discoloration. pH decreased during storage in all samples, except sample A. Organic acid contents of all samples increased during storage, with lactic acid content showing the highest increase. Free amino acid content decreased with increasing storage time. Free sugar content of all samples decreased during storage. Sensory results showed sample A maintained acceptable quality until 90 days of storage. These results suggest that quality of minced ginger could be successfully maintained with the additions of selected additives for up to 90 days.

A Study on Flammability Risk of Flammable Liquid Mixture (가연성 액체 혼합물의 인화 위험성에 관한 연구)

  • Kim, Ju Suk;Koh, Jae Sun
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.701-711
    • /
    • 2020
  • Purpose: In this study, the risk of flammability of a liquid mixture was experimentally confirmed because the purpose of this study was to confirm the increase or decrease of the flammability risk in a mixture of two substances (combustible+combustible) and to present the risk of the mixture. Method: Flash point test method and result processing were tested based on KS M 2010-2008, a tag sealing test method used as a flash point test method for crude oil and petroleum products. The manufacturer of the equipment used in this experiment was Japan's TANAKA. The flash point was measured with a test equipment that satisfies the test standards of KS M 2010 with equipment produced by the company, and LP gas was used as the ignition source and water as the cooling water. In addition, when measuring the flash point, the temperature of the cooling water was tested using cooling water of about 2℃. Results: First of all, in the case of flammable + combustible mixtures, there was little change in flash point if the flash point difference between the two substances was not large, and if the flash point difference between the two substances was low, the flash point tended to increase as the number of substances with high flash point increased. However, in the case of toluene and methanol, the flash point of the mixture was lower than that of the material with a lower flash point. Also, in the case of a paint thinner, it was not easy to predict the flash point of the material because it was composed of a mixture, but as a result of experimental measurement, it was measured between -24℃ and 7℃. Conclusion: The results of this study are to determine the risk of mixtures through experimental studies on flammable mixtures for the purpose of securing the effectiveness of the details of the criteria for determining dangerous goods in the existing dangerous goods safety management method and securing the reliability and reproducibility of the determination of dangerous goods Criteria have been presented, and reference data on experimental criteria for flammable liquids that are regulated in firefighting sites can be provided. In addition, if this study accumulates know-how on differences in test methods, it is expected that it can be used as a basis for research on risk assessment of dangerous goods and as a basis for research on dangerous goods determination.

Properties and Suitability of Bark Extractives from Larix leptolepsis as a Bonding Agent (낙엽송(落葉松) 수피추출물(樹皮抽出物)의 특성(特性)과 접착제화(接着劑化)의 적합성(適合性))

  • Oh, Jung Do;Ahn, Won Yung
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.3
    • /
    • pp.294-302
    • /
    • 1988
  • The experiment was carried out to investigate the properties of bark extractives form Larix epilepsies and to evacuate their suitability as a bonding agent. The yield and reactivity were measured to examine the influence of temperature and time and the effect of carbonation and sulfonation. To define the possibility of practical application as wood adhesives the viscosity and gelation time were measured at 33% concentration. The results obtained were summarized as follows : 1. As the both yield and reactivity were high, extraction for 2 hours at $80^{\circ}C$ was the optimal temperature and time. 2. The highest effect achieved at 1% $Na_2CO_3$ about carbonation and 1% $Na_2SO_3$ : $NaHSO_3$ and 0.25% $Na_2SO_3$ about sulfonation. The sulfonation of 0.25% $Na_2SO_3$ increased the yield and reactivity most highly. 3. By using hot water as extraction liquid the yield was 17.2%, while the addition of 1% and 5% NaOH to the extraction liquid increased the yield to 38.6% and 44.6%, respectively. 4. Hot water extracts showed the highest reactivity(68.8%). The addition of 1% and 5% NaOH led to decrease in reactivity(49.3% and 25.8%, respectively). 5. At 33% concentration of the extracts the viscosity appeared very variable. Significantly high values of viscosity was measured in 1% NaOH solution, while very low values appeared for 5% NaOH solution. 6. The shortest gelation time was determined at pH 7 to 10 and the highest at pH 4. The use of paraformaldehyde resulted in gelation times longer than those of 37% formaldehyde solution. 7. Except the sulfonation extracts of hot water and 1% NaOH, the other extracts were found unsuitable due to high viscosity(1% NaOH extracts, sulfonation extracts) or to curing inability(5% NaOH extracts, sulfonation extracts of 5% NaOH). 8. From the three extract solutions which appeared to be suitable for use as bonding agents the hot water extracts and the sulfonation extracts of hot water were superior in extract reactivity, while the sulfonation extracts of 1% NaOH exceeded the other two extracts in extract yield.

  • PDF

Study on the Thermal Storage Characteristics of Phase Change Materials for Greenhouse Heating (온실보온(溫室保溫)을 위한 상변화(相變化) 물질(物質)의 축열특성연구(蓄熱特性硏究))

  • Song, Hyun-Kap;Ryou, Young-Sun;Kim, Young-Bok
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.65-78
    • /
    • 1993
  • An overdose of fossil fuel for greenhouse heating causes not only the high cost and low quality of agricultural products, but also the environmental pollution of farm village. To solve these problems it is desirable to maximize the solar energy utilization for the heating of greenhouse in winter season. In this study phase change materials were selected to store solar energy concentratively for heating the greenhouse and their characteristics of thermal energy storage were analyzed. The results were summarized as follows. The organic $C_{28}H_{58}$, and the inorganic $CH_3COONa{\cdot}3H_2O\;and\;Na_2SO_4{\cdot}10H_2O$ were selected as low temperature latent heat storage materials. The equation of critical radius was derived to define the generating mechanism of the maximum latent heat of phase change materials. The melting point of $C_{28}H_{58}$ was $62^{\circ}C$, and the latent heat was $50.0{\sim}52.0kcal/kg$. The specific heat of liquid and solid phase was $0.54{\sim}0.69kcal/kg^{\circ}C$ and $0.57{\sim}0.75kcal/kg^{\circ}C$ respectively. The melting point of $CH_3COONa{\cdot}3H_2O$ was $61{\sim}62^{\circ}C$, the latent heat was $64.9{\sim}65.8$ kcal/kg and the specific heat of liquid and solid phase was respectively $0.83kcal/kg^{\circ}C$ and $0.51{\sim}0.52kcal/kg^{\circ}C$. The melting point of $Na_2SO_4{\cdot}10H_2O$ was $30{\sim}30.9^{\circ}C$, the latent heat was 53.0 kcal/kg and the specific heat of liquid and solid phase was respectively $0.78{\sim}0.89kcal/kg^{\circ}C$ and $0.50{\sim}0.7kcal/kg^{\circ}C$ When the urea of 21.85% was added to control the melting point of $Na_2SO_4{\cdot}10H_2O$ and the phase change cycles were repeated from 0 to 600, the melting point was $16.7{\sim}16.0^{\circ}C$ and the latent heat was $36.0{\sim}28.0kcal/kg^{\circ}C$.

  • PDF

Isolation of High Yielding Alkaline Protease Mutants of Vibrio metschnikovii Strain RH530 and Detergency Properties of Enzyme

  • Chung, So-Sun;Shin, Yong-Uk;Kim, Hee-Jin;Jin, Ghee-Hong;Rho, Hyune-Mo;Lee, Hyune-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.349-354
    • /
    • 2000
  • Abstract A facultative alkalophilic gram-negative Vibrio metschnikovii strain RH530, isolated from the wastewater, produced several alkaline proteases (VAP) including six alkaline serine proteases and a metalloprotease. From this strain, high yielding YAP mutants were isolated by NTG treatment. The isolated mutant KS1 showed nine times more activity than the wild-type after optimization of the culture media. The production was regulated by catabolite repression when glucose was added to the medium. The effects of several organic nitrogen sources on the production of the YAP were investigated to avoid catabolite repression. The combination of 4% wheat gluten meal (WGM), 1.5% cotton seed flour (eSF), and 5% soybean meal (SBM) resulted in the best production when supplemented with 1% NaCl. The YAP showed a resistance to surfactants such as $sodium-{\alpha}-olefin$ sulfonate (AOS), polyoxy ethylene oxide (POE), and sodium dodecyl sulfate (SDS), yet not to linear alkylbenzene sulfonate (LAS). However, the activity of the YAP was restored completely when incubated with LAS in the presence of POE or $Na_2SO_4$. The YAP was stable in a liquid laundry detergent containing 6.6% SLES (sodium lauryl ether sulfate), 6.6% LAS, 19.8% POE, and stabilizing agents for more than two weeks at $40^{\circ}C$, but the stability was sharply decreased even after 1 day when incubated at $60^{\circ}C$. A washing performance test with the YAP exhibited it to be a good washing power by showing 51 % and 60% activity at $25^{\circ}C{\;}and{\;}40^{\circ}C$, respectively, thereby indicating that the YAP also has a good detergency at a low temperature. All the results suggest that the YAP produced from the mutant strain KSI has suitable properties for use in laundry detergents.rgents.

  • PDF

Hydrogen Storage and Release Properties for Compacted Ti-Mn Alloy (컴팩션된 Ti-Mn계 합금의 수소저장 및 방출 특성)

  • KIM, JONG SEOK;HAN, WON BI;CHO, HYUN SUK;JEONG, MOON SUN;JEONG, SEONG UK;CHO, WON CHUL;KANG, KYOUNG SOO;KIM, CHANG HEE;BAE, KI KWANG;KIM, JONG WON;PARK, CHU SIK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.9-16
    • /
    • 2017
  • Hydrogen forms metal hydrides with some metals and alloys leading to solid-state storage under moderate temperature and pressure that gives them the safety advantage over the gas and liquid storage methods. However, it has disadvantages of slow hydrogen adsorption-desorption time and low thermal conductivity. To improve characteristics of metal hydrides, it is important that activation and thermal conductivity of metal hydrides are improved. In this study, we have been investigated hydrogen storage properties of Hydralloy C among Ti-Mn alloys. Also, the characteristics of activation and thermal conductivity of Hydralloy C were enhanced to improve kinetics of hydrogen adsorption-desorption. As physical activation method, PHEM (planetary high energy mill) was performed in Ar or $H_2$ atmosphere. Hydralloy C was also activated by $TiCl_3$ catalyst. To improve thermal conductivity, various types of ENG (expanded natural graphite) were used. The prepared samples were compacted at pressure of 500 bar. As a result, the activation properties of $H_2$ PHEM treated Hydralloy C was better than the other activation methods. Also, the amounts of hydrogen storage showed up to 1.6 wt%. When flake type ENG was added to Hydralloy C, thermal conductivity and hydrogen storage properties were improved.

A Study on Characteristics of Exposure to Tetrahydrofuran of Manufacturing and Handling Workers (테트라하이드로퓨란 제조 및 취급 근로자의 노출특성에 관한 연구)

  • Chio, Ho Chun;Hong, Jwa Ryung;Lee, Gye Young;Kim, Doo Ho;Park, Chung Yill
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.3
    • /
    • pp.156-161
    • /
    • 2011
  • Objectives: Tetrahydrofuran (THF) is a colorless, water-miscible organic liquid with low viscosity at standard temperature and pressure. THF has been used as a solvent and a precursor for various syntheses of polymers. However, THF is known to irritate to the eyes, skin and mucus membranes. Overexposure by inhalation, ingestion or skin contact may produce nausea, dizziness, headaches, respiratory irritation and possible skin burns. The purpose of this study is to evaluate of the worker exposure and characteristics of workers in the workplaces that use or manufacture THF. Methods: Sixteen factories in Korea, which manufacture or use THF, were selected for this study and a total of 130 air samples including 104 time-weighted average (TWA) samples and 26 short-term exposure limit (STEL) samples, were collected. Air samples were collected with charcoal tube (100mg/50mg) and analyzed by gas chromatograph/flame ionization detector(GC/FID). Results: The TWA concentration of THF was 16.05ppm (GM) at PS script printing, 2.32ppm (GM) at PVC stabilizer, 1.03ppm (GM) at Lithium triethylborohydride, 0.63ppm (GM) at Polytetramethylene ether glycol(PTMEG), 0.42ppm (GM) at Manufacturing THF, 0.13ppm (GM) at Glue and 0.12ppm (GM) at synthetic rubber/resins. Two out of sampes for PS script printing exceeded 50ppm as 8-hour exposure limit of MOEL. The short term exposure to THF was 54.77ppm (GM) at PS script printing, 17.10ppm (GM) at PTMEG, 13.76ppm (GM) at Manufacturing THF, 2.86ppm (GM) at Lithium triethylborohydride, 0.87ppm (GM) at synthetic rubber/resins and 0.13ppm (GM) Glue. We found that the highest exposure process for both the TWA and STEL samples was PS script process. Two samples exceeded 100ppm as short term exposure limit of Ministry of Employment and Labor(MOEL). Conclusions: Characteristic of STEL concentration for THF is considerably different from TWA concentration in workplaces because workers could exposure high concentration of THF in a moment when they work irregularly schedule. So exposure controls for momentary works have to be prepared, and considered the skin absorption and inhale of THF.

Characterization of Bio-oils Produced by Fluidized Bed Type Fast Pyrolysis of Woody Biomass (목질바이오매스의 급속열분해에 의해 생성된 바이오오일의 특성 분석)

  • Choi, Joon-Weon;Choi, Don-Ha;Cho, Tae-Su;Meier, Dietrich
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.36-43
    • /
    • 2006
  • Using fluidized bed type fast pyrolysis system (capacity 400 g/h) bio-oils were produced from beech (Fagus sylvatica) and softwood mixture (spruce and larch, 50:50). The pyrolysis was performed for 1~2 s at the temperature of $470{\pm}5^{\circ}C$. Pyrolysis products consisted of liquid form of bio-oil, char and gases. In beech wood bio-oil was formed to ca. 60% based on dry biomass weight and the yield of bio-oil was 49% in soft wood mixture. The moisture contents in both bio-oils were ranged between 17% and 22% and the bio-oil's density was measured to $1.2kg/{\ell}$. Bio-oils were composed of 45% carbon, 47% oxygen, 7% hydrogen and lower than 1% nitrogen,which was very similar to those of original biomass. In comparison with oils from fossil resources, oxygen content was very high in bio-oils, while no sulfur was found. More than 90 low molecular weight components, classified to aromatic and non aromatic compounds, were identified in bio-oils by gas chromatographic analysis, which amounted to 31~33% based on the dry weight of bio-oils.

A Study on the Detergency of Alkali-treated Polyester Fabric - The effects of surface structure- (알칼리 감양가공이 Polyester 직물의 세척성에 미치는 영향 -표면구조의 효과를 중심으로-)

  • Shin Rae Won;Kim Sung Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.10 no.2
    • /
    • pp.1-9
    • /
    • 1986
  • To study the effects of surface structure of fiber on the decrement of fatty soil removal at high temperature, the following variables were selected: controled and alkali-treated P.E.T.(polyester) fabrics and chopped fibers as substrates to estimate the detergencies, different aging methods of soiled substrates, and different washing temperatures and surfactant solutions. Radiotagged tripalmitin was used as soil and the detergency was estimated by means of liquid scintillation counting method. The results were as following: The surface of the fiber became rough with many grooves and the hydrophilicity of the fiber was increased and the structure of the fabric became loose by alkali treatment. While the detergency of alkali-treated P.E.T. fabric was better than that of controled P. E. T. fabric, there was no significant differences between the detergencies of controled and alkali-treated chopped fibers. These results indicate that the increment of detergency of alkali-treated P.E.T. fabric is mainly resulted from the changes of fabric structure and the improved hydrophilicity of fiber by alkai treatment. The detergency of tripalmitin was increased with elevating temp. below the m.p. of tripalmitin, was decreased around the m.p., and again was increased above the m.p ..It is considered that the decrement of detergency around the m.p. is due to the diffusion of molten tripalmitin into the grooves on fiber surface, the inner part of fiber, and between fibers. When controled and alkali-treated soiled fabrics and soiled chopped fibers were washed in the distilled water and in the Na-DBS solution respectively, below $60^{\circ}C$ detergencies of alkali-treated fabrics and chopped fibers were improved. However above $60^{\circ}C$ this result was reversed. Therefore these results are regarded as the effects of grooves on fiber surface at high temp. and improved hydrophilicity at low temp. by alkali treatment. When controled and alkali-treated soiled fabrics and soiled chopped fibers were hot-aged before washing, the detergencies of both species were decreased generally. Because the soil was diffused into the grooves on fiber surface, the inner part of fiber, and between fibers during hot-aging. The detergencies of hot-aged species were also decreased above certain temp.. These results suggest that the decrement of detergency at high temp. be resulted not only from the diffusion of soil into the grooves on fiber surface, the inner part of fiber, and between fibers, but also from the characteristics of surfactant solutions.

  • PDF