• Title/Summary/Keyword: Low temperature bonding

Search Result 303, Processing Time 0.024 seconds

The Interaction of Hydrogen Atom with ZnO: A Comparative Study of Two Polar Surfaces

  • Doh, Won-Hui;Roy, Probir Chandra;Kim, Chang-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.249-249
    • /
    • 2012
  • The interaction of hydrogen with ZnO single crystal surfaces, ZnO(0001) and ZnO(000-1), has been investigated using a temperature programmed desorption (TPD) technique. Both surfaces do not interact with molecular hydrogen. When the ZnO(0001) is exposed to atomic hydrogen at 370 K, hydrogen is adsorbed in the surface and desorption takes place at around 460 K and 700 K. In ZnO(000-1), the desorption peaks are observed at around 440 K and 540 K. In both surfaces, as the atomic hydrogen exposure is further increased, the intensity of the low-temperature peak reaches maximum but the intensity of the high-temperature peak keeps increasing. In ZnO(000-1), the existence of hydrogen bonding to the surface O atoms and the bulk hydrogen has been confirmed by using X-ray photoelectron spectroscopy (XPS). When the Zn(0001) surface is exposed to atomic hydrogen at around 200 K, a new $H_2$ desorption peak has been observed at around 250 K. The intensity of the desorption feature at 250 K is much greater than that of the desorption feature at 460 K. This low-temperature desorption feature indicates hydrogen is bonded to surface Zn atoms. We will report the effect of the ZnO structure on the adsorption and bulk diffusion of hydrogen.

  • PDF

Fabrication of SMD Type PTC Thermistor with Multilayer Structure

  • Kim, Yong-Hyuk;Lee, Duck-Cuool
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.76-82
    • /
    • 2000
  • PTC thermistors with multilayer structure were fabricated by internal electrode bonding technique in order to realize low resistance. MLPTC (Multilayer Positive Temperature Coefficient) possess various features, such as small size, low resistivity and large current. We describe the effect of additives on the PTC characteristics, voltage - current characteristics, temperature dependence of resistance and complex impedance spectra as a function of frequency range 100 Hz to 13MHz to determine grain boundary resistance. It was found that MLPTC thermistor has both highly nonlinear effects of temperature dependent resistance and voltage dependent current behaviors, which act as passive element with self-repair mechanisms. Decrease of room temperature resistance with increasing the number of layers was demonstrated to be a grain boundary effect. Switching characteristics of current were caused by heat capacity of PTC thermistor with multilayer structure. Switching times are lengthened by increasing the number of layers.

  • PDF

Electrode bonding method and characteristic of high density rechargeable battery using induction heating system (유도 가열 접합 시스템을 이용한 대용량 이차전지 전극의 접합 방법 및 특성)

  • Kim, Eun-Min;Kim, Shin-Hyo;Hong, Won-Hee;Cho, Dae-Kweon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.688-697
    • /
    • 2014
  • In this study, electrode bonding technology needed for high density of rechargeable battery is studied, which is recently researched for electric vehicle, the small leisure vessel. For the alternative overcoming the limit of stacking amount able to be stacked by conventional ultrasonic welding, the low temperature bonding method, eligible for minimum of degeneration of chemical activator on the electrode surface which is generated by thermal effect as well as the increase of conductivity and tension strength caused by electrode bonding using filler metal, not using conventional direct heating on the electrode material method, is studied. Specifically to say, recently used more generally the ultrasonic welding and spot welding method are not usable for satisfying stable electric conductivity and bonding strength when much electrode is stacking bonded. If the electrical power is unreasonably increased for the welding, due to the effect of welding temperature, deformation of electrode and activating material degeneration are caused, and after the last packaging, decline of electrical output and generating heat cause to reduce stability of battery. Therefore, in this study, induction heating system bonding method using high frequency heating and differentiated electrode method using filler metal pre-treatment of hot dipping are introduced.

Effect of $N_2+H_2$ Forming Gas Annealing on the Interfacial Bonding Strength of Cu-Cu thermo-compression Bonded Interfaces (Cu-Cu 열압착 웨이퍼 접합부의 계면접합강도에 미치는 $N_2+H_2$ 분위기 열처리의 영향)

  • Jang, Eun-Jung;Kim, Jae-Won;Kim, Bioh;Matthias, Thorsten;Hyun, Seung-Min;Lee, Hak-Joo;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.3
    • /
    • pp.31-37
    • /
    • 2009
  • Cu-Cu thermo-compression bonding process was successfully developed as functions of the $N_2+H_2$ forming gas annealing conditions before and after bonding step in order to find the low temperature bonding conditions of 3-D integrated technology where the quantitative interfacial adhesion energy was measured by 4-point bending test. While the pre-annealing with $N_2+H_2$ gas below $200^{\circ}C$ is not effective to improve the interfacial adhesion energy at bonding temperature of $300^{\circ}C$, the interfacial adhesion energy increased over 3 times due to post-annealing over $250^{\circ}C$ after bonding at $300^{\circ}C$, which is ascribed to the effective removal of native surface oxide after post-annealing treatment.

  • PDF

Novel Bumping Process for Solder on Pad Technology

  • Choi, Kwang-Seong;Bae, Ho-Eun;Bae, Hyun-Cheol;Eom, Yong-Sung
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.340-343
    • /
    • 2013
  • A novel bumping process using solder bump maker is developed for the maskless low-volume solder on pad (SoP) technology of fine-pitch flip chip bonding. The process includes two main steps: one is the aggregation of powdered solder on the metal pads on a substrate via an increase in temperature, and the other is the reflow of the deposited powder to form a low-volume SoP. Since the surface tension that exists when the solder is below its melting point is the major driving force of the solder deposit, only a small quantity of powdered solder adjacent to the pads can join the aggregation process to obtain a uniform, low-volume SoP array on the substrate, regardless of the pad configurations. Through this process, an SoP array on an organic substrate with a pitch of $130{\mu}m$ is successfully formed.

Thermal Transient Characteristics of Die Attach in High Power LED Package

  • Kim Hyun-Ho;Choi Sang-Hyun;Shin Sang-Hyun;Lee Young-Gi;Choi Seok-Moon;Oh Yong-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.331-338
    • /
    • 2005
  • The rapid advances in high power light sources and arrays as encountered in incandescent lamps have induced dramatic increases in die heat flux and power consumption at all levels of high power LED packaging. The lifetime of such devices and device arrays is determined by their temperature and thermal transients controlled by the powering and cooling, because they are usually operated under rough environmental conditions. The reliability of packaged electronics strongly depends on the die attach quality, because any void or a small delamination may cause instant temperature increase in the die, leading sooner or later to failure in the operation. Die attach materials have a key role in the thermal management of high power LED packages by providing the low thermal resistance between the heat generating LED chips and the heat dissipating heat slug. In this paper, thermal transient characteristics of die attach in high power LED package have been studied based on the thermal transient analysis using the evaluation of the structure function of the heat flow path. With high power LED packages fabricated by die attach materials such as Ag paste, solder paste and Au/Sn eutectic bonding, we have demonstrated characteristics such as cross-section analysis, shear test and visual inspection after shear test of die attach and how to detect die attach failures and to measure thermal resistance values of die attach in high power LED package. From the structure function oi the thermal transient characteristics, we could know the result that die attach quality of Au/Sn eutectic bonding presented the thermal resistance of about 3.5K/W. It was much better than those of Ag paste and solder paste presented the thermal resistance of about 11.5${\~}$14.2K/W and 4.4${\~}$4.6K/W, respectively.

  • PDF

The Effect of the Core-shell Structured Meta-aramid/Epoxy Nanofiber Mats on Interfacial Bonding Strength with an Epoxy Adhesive in Cryogenic Environments (극저온 환경에서 에폭시 접착제의 물성 향상을 위한 나노 보강재의 표면 개질에 관한 연구)

  • Oh, Hyun Ju;Kim, Seong Su
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.129-134
    • /
    • 2013
  • The strength of adhesive joints employed in composite structures under cryogenic environments, such as LNG tanks, is affected by thermal residual stress generated from the large temperature difference between the bonding process and the operating temperature. Aramid fibers are noted for their low coefficient of thermal expansion (CTE) and have been used to control the CTE of thermosetting resins. However, aramid composites exhibit poor adhesion between the fibers and the resin because the aramid fibers are chemically inert and contain insufficient functional groups. In this work, electrospun meta-aramid nanofiber-reinforced epoxy adhesive was fabricated to improve the interfacial bonding between the adhesive and the fibers under cryogenic temperatures. The CTE of the nanofiber-reinforced adhesives were measured, and the effect on the adhesion strength was investigated at single-lap joints under cryogenic temperatures. The fracture toughness of the adhesive joints was measured using a Double Cantilever Beam (DCB) test.

Evaluation of the Bonding Behavior of the Rehabilitation Method Applying Carbon Fiber Subjected to the Variation of Environmental Condition (탄소섬유 접착 보강공법의 환경변화에 따른 부착특성 평가)

  • Han, Cheon Goo;Byun, Hang Yong;Park, Yong Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 2008
  • This paper provides the test results of bonding behavior of the interface between concrete substrate and carbon fiber in the rehabilitation method applying carbon fiber with epoxy based resin adhesive. The difference in each components was gradually increased subjected to the repetition of temperature variation, regardless of the strength of the substrate concrete, while the ultrasonic interface between each component occurred. An increase in difference of the temperature resulted in a decrease in bond strength of each component. Associated failure mode was shown to be interfacial failure and substrate concrete failure. No remarkable changes were found in the deformation and ultrasonic velocity of each component until the four cycles of the dry and moisture test. Hence, the moisture condition may not affect the bonding behavior of each component. After the repetition of dry and moisture test, corresponding bond strength was reduced to 40% of that before test. For the effect of freeze and thaw test, the cycle of freeze and thaw within 4 cycles resulted in debonding of each component.

Effects of Ar/N2 Two-step Plasma Treatment on the Quantitative Interfacial Adhesion Energy of Low-Temperature Cu-Cu Bonding Interface (Ar/N2 2단계 플라즈마 처리에 따른 저온 Cu-Cu 직접 접합부의 정량적 계면접착에너지 평가 및 분석)

  • Choi, Seonghun;Kim, Gahui;Seo, Hankyeol;Kim, Sarah Eunkyung;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.29-37
    • /
    • 2021
  • The effect of Ar/N2 two-step plasma treatment on the quantitative interfacial adhesion energy of low temperature Cu-Cu bonding interface were systematically investigated. X-ray photoelectron spectroscopy analysis showed that Ar/N2 2-step plasma treatment has less copper oxide due to the formation of an effective Cu4N passivation layer. Quantitative measurements of interfacial adhesion energy of Cu-Cu bonding interface with Ar/N2 2-step plasma treatment were performed using a double cantilever beam (DCB) and 4-point bending (4-PB) test, where the measured values were 1.63±0.24 J/m2 and 2.33±0.67 J/m2, respectively. This can be explained by the increased interfacial adhesion energy according phase angle due to the effect of the higher interface roughness of 4-PB test than that of DCB test.

Effect of Spraying Conditions in Flame Spraying of Ni-Cr Base Self Fluxing Alloy on Mild Steel (가스용사에 의한 Ni-Cr 기 자용성합금 용사 의 특성에 미치는 용사조건의 영향)

  • 배종규;박경채;정인상
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.1
    • /
    • pp.26-42
    • /
    • 1989
  • It has between investigated that the optimum spaying conditions, such as, spraying distance, fusing temperature and fusing time, ect, in a Ni-cr base self fluxing alloy sprayed on the mild steel substrate by oxygen-acetylenc flame spraying. Sprayed specimens on various conditions were fuused in a vacuum furnace and the results were as follows. The optimum spraying condition for excellent coating layer are obtained under spraying distances, fusing temperature and fusing and time ; 180~240mm,1050~110$0^{\circ}C$and 15~30min, respectively. The adhesive strength and surface hurface hardness of the as sprayed specimens were very low by mechanical bonding becaus of the diffusion layer during process. The carbides and borides and formed in the sprayed coating layer and densification of the layer was resulted from the elimination of pores and oxides. The hardness of sprayed coating layer, particularly in the high temperature, was superior to ordinary tool steels.

  • PDF