• Title/Summary/Keyword: Low switching energy

Search Result 250, Processing Time 0.025 seconds

Improved Dual-Path Energy Recovery Circuit using a Current Source and a Voltage Source for High Resolution and Large-Sized Plasma Display Panel

  • Yi, Kang-Hyun;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.544-546
    • /
    • 2008
  • An improved dual-path energy recovery circuit (ERC) using a current source and a voltage source for plasma display panel (PDP) is proposed. The proposed ERC uses the voltage source to charge a panel and the current source to discharge the panel. Thus, the proposed circuit can make the panel charge to $V_S$ and discharge to 0V, fully and it is possible to achieve zero voltage switching (ZVS) of all switches in H-bridge inverter and zero current switching (ZCS) of all switches in the ERC. Moreover, it has less conduction and switching loss in ERC devices by the dual energy recovery paths for charging and discharging the panel. Furthermore, it has features of canceling the gas discharge current, high performance and the low cost ERC components. The operation principle and features of the proposed ERC are presented in detail and verified with 42-inch SD PDP.

  • PDF

A Novel Current-fed Energy Recovery Sustaining Driver for Plasma Display Panel(PDP)

  • Han, Sang-Kyoo;Moon, Gun-Woo;Youn, Myung-Joong
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • A novel current-fed energy-recovery sustaining driver (CFERSD) for a PDP is proposed in this paper. Its main idea is to recover the energy stored in the PDP or to inject the input source energy to the PDP by using the current source built-up in the energy recovery inductor. This method provides zero-voltage-switching (ZVS) of all main power switches, the reduction of EMI, and more improved operational voltage margins with the aid of the discharge current compensation. In addition, since the current flowing through the energy recovery inductor can compensate the plasma discharge current flowing through the conducting power switches, the current stress through all main power switches can be considerably reduced. Furthermore, it features a low conduction loss and fast transient time. Operations, features and design considerations are presented and verified experimentally on a 1020${\times}$l06mm sized PDP, 50kHz-switching frequency, and sustaining voltage 140V based prototype.

New Soft-Switching Method of 3-phase Interleaved Bidirectional DC-DC Converter for Battery Charging and Discharging (배터리 충·방전용 3상 인터리브드 양방향 DC-DC 컨버터의 새로운 소프트 스위칭 방법)

  • Jung, Jae-Hun;Seo, Bo-Gil;Kwon, Chang-Keun;Nho, Eui-Cheol;Kim, In-Dong;Kim, Heung-Geun;Chun, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.383-390
    • /
    • 2014
  • This paper deals with novel soft-switching method for a bidirectional DC-DC converter in battery charging and discharging system. The proposed soft-switching method provides ZVS and ZCS at turn-on, and ZVS at turn-off of the switch in both charging and discharging operation modes. The soft switching condition can be obtained in wide load range, and provide low switching loss as well as low voltage spike at turn-off of the switch. Proposed method is analyzed in charging and discharging mode. Simulation and experimental results validate the usefulness of the proposed soft-switching method.

Design Considerations of Asymmetric Half-Bridge for Capacitive Wireless Power Transmission

  • Truong, Chanh Tin;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.139-141
    • /
    • 2019
  • Capacitive power transfer has an advantage in the simplicity of the energy link structure. So, the conventional phase -shift full bridge sometime is not always the best choice because of its complexity and high cost. On the other hand, the link capacitance is usually very low and requires high-frequency operation, but, the series resonant converter loses zero-voltage switching feature in the light load condition, which makes the switching loss high especially in CPT system. The paper proposes a new low-cost topology based on asymmetric half-bridge to achieve simplicity as well as wide zero voltage switching range. The design procedure is presented, and circuit operations are analyzed and verified by simulation.

  • PDF

The High efficiency Buck Power Conversion System for Photovoltaic Power Generator (태양광발전을 위한 고효율 승압형 전력변환장치)

  • 박경원;김영철;김준홍;서기영;고희석;이현우
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.88-92
    • /
    • 1997
  • Power conversion system must be increased swiching frequency in order to achieve a small size, a light weight and a low noise, However, the swiches of converter are subjected to high switching power losses and switching stresses. As a result of those, the power system brings on a low efficiency. In this paper, the authors propose a DC-DC boost converter of high power by partial resonant switch method (PRSM). The switching devices in a proposed circuit are operated with soft swiching and the control technique of those is simplified for switch to drive in constant duty cycle. The partial resonant circuit makes use of a inductor suing step up and a condenser of loss-less snubber. Also the circuit has a merit which is taken to increase of efficiency, as if makes to a regeneration at input source of accumulated energy in snubber condenser without loss of snubber in conventional cirvuit. The result is the the switching loss is very low and the efficiency of system is high. The proposed converter is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF

Energy-efficient Low-delay TDMA Scheduling Algorithm for Industrial Wireless Mesh Networks

  • Zuo, Yun;Ling, Zhihao;Liu, Luming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2509-2528
    • /
    • 2012
  • Time division multiple access (TDMA) is a widely used media access control (MAC) technique that can provide collision-free and reliable communications, save energy and bound the delay of packets. In TDMA, energy saving is usually achieved by switching the nodes' radio off when such nodes are not engaged. However, the frequent switching of the radio's state not only wastes energy, but also increases end-to-end delay. To achieve high energy efficiency and low delay, as well as to further minimize the number of time slots, a multi-objective TDMA scheduling problem for industrial wireless mesh networks is presented. A hybrid algorithm that combines genetic algorithm (GA) and simulated annealing (SA) algorithm is then proposed to solve the TDMA scheduling problem effectively. A number of critical techniques are also adopted to reduce energy consumption and to shorten end-to-end delay further. Simulation results with different kinds of networks demonstrate that the proposed algorithm outperforms traditional scheduling algorithms in terms of addressing the problems of energy consumption and end-to-end delay, thus satisfying the demands of industrial wireless mesh networks.

Study of AC/DC Resonant Pulse Converter for Energy Harvesting (에너지 획득을 위한 AC/DC 공진형 펄스 컨버터의 연구)

  • Ngo Khai D.T.;Chung Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.274-281
    • /
    • 2005
  • A new resonant pulse converter for energy harvesting is proposed. The converter transfers energy from a low-voltage AC current to a battery. The low-voltage AC current source is an equivalent of the piezoelectric generator, which converts the mechanical energy to the electric energy. The converter consists of a full-bridge rectifier having four N-type MOSFETs and a boost converter haying N-type MOSFET and P-type MOSFET instead of diode. Switching of MOSFETs utilizes the capability of the $3^{rd}$ regional operation. The operational principles and switching method for the power control of the converter are investigated with the consideration of effects of the parasitic capacitances of MOSFETs. Simulation and experiment are performed to prove the analysis of the converter operation and to show the possibility of the $\mu$W energy harvesting.

Two Phase Clocked Adiabatic Static CMOS Logic and its Logic Family

  • Anuar, Nazrul;Takahashi, Yasuhiro;Sekine, Toshikazu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • This paper proposes a two-phase clocked adiabatic static CMOS logic (2PASCL) circuit that utilizes the principles of adiabatic switching and energy recovery. The low-power 2PASCL circuit uses two complementary split-level sinusoidal power supply clocks whose height is equal to $V_{dd}$. It can be directly derived from static CMOS circuits. By removing the diode from the charging path, higher output amplitude is achieved and the power consumption of the diode is eliminated. 2PASCL has switching activity that is lower than dynamic logic. We also design and simulate NOT, NAND, NOR, and XOR logic gates on the basis of the 2PASCL topology. From the simulation results, we find that 2PASCL 4-inverter chain logic can save up to 79% of dissipated energy as compared to that with a static CMOS logic at transition frequencies of 1 to 100 MHz. The results indicate that 2PASCL technology can be advantageously applied to low power digital devices operated at low frequencies, such as radio-frequency identifications (RFIDs), smart cards, and sensors.

High Efficiency Inverter System by Partial Resonant Method (부분공진기법에 의한 고효율 인버터 시스템)

  • 김영철;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.39-43
    • /
    • 1998
  • A large number of soft switching topologies included a resonant circuit have been proposed. But these circuits increase number of switch in circuit and complicate sequence of switching operation. In this paper, the authors propose power conversion system, DC-AC inverter of high efficiency and high power factor with soft switching mode by partial resonant method. The switching devices in a proposed circuits are operated with soft switching by the partial resonant method, that is, PRS2MPC (Partial Resonant Soft Switching Mode Power Converter). The result is that the switching loss is very low and the efficiency of system is high. And the snubber condenser used in partial resonant circuit makes charging energy regenerated at input power source for resonant operation.

  • PDF

A Novel Current-fed Energy Recovery Sustaining Driver for Plasma Display Panel (PDP) (PDP를 위한 새로운 전류원 타입의 에너지 회수 및 방전유지 회로)

  • Han S.K.;Moon G.W.;Youn M.J.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.755-760
    • /
    • 2003
  • A novel current-fed energy-recovery sustaining driver (CFERSD) for a PDP is proposed in this paper. Its main idea is to recover the energy stored in the PDP or to inject the input source energy to the PDP by using the current source built-up in the energy recovery inductor. This method provides zero-voltage-switching (ZVS) of all main power switches, the reduction of EMI, and more improved operational voltage margins with the aid of the discharge current compensation. In addition, since the current flowing through the energy recovery inductor can compensate the plasma discharge current flowing through the conducting power switches, the current stress through all main power switches can be considerably reduced. Furthermore, it features a low conduction loss and fast transient time. Operations, features and design considerations are presented and verified experimentally on a 1020X106mm sized PDP, 50kHz-switching frequency, and sustaining voltage 140V based prototype.

  • PDF