• Title/Summary/Keyword: Low switching energy

Search Result 250, Processing Time 0.025 seconds

A Novel Switched Capacitor High Step-up dc/dc Converter Using a Coupled Inductor with its Generalized Structure

  • Hamkari, Sajjad;Moradzadeh, Majid;Zamiri, Elyas;Nasir, Mehdi;Hosseini, Seyed Hossein
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.579-589
    • /
    • 2017
  • In this study a new high step-up dc-dc converter is presented. The operation of the proposed converter is based on the capacitor switching and coupled inductor with a single active power switch in its structure. A passive voltage clamp circuit with two capacitors and two diodes is used in the proposed converter for elevating the converter's voltage gain with the recovered energy of the leakage inductor, and for lowering the voltage stress on the power switch. A switch with a low $R_{DS}$ (on) can be adopted to reduce conduction losses. In the generalized mode of the proposed converter, to reach a desired voltage gain, capacitor stages with parallel charge and series discharge techniques are extended from both sides of secondary side of the coupled inductor. The proposed converter has the ability to alleviate the reverse recovery problem of diodes with circuit parameters. The operating principle and steady-states analyses are discussed in detail. A 40W prototype of the proposed converter is implemented in the laboratory to verify its operation.

A Study on the Improvement of ripple factor tube voltage waveforms in inverter type X-ray generator (인버터식 X선장치의 관전압 맥동율 개선에 관한 연구)

  • 이성길;임홍우;조금배;정수복;백형래
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.234-238
    • /
    • 1999
  • In order to radiate X-ray, the low ripple stabilized high voltage DC over the range of 40KV to 150KV is directly inflicted to X-ray tube. The energy characteristics of the radiated X-ray depend on the pulsating waveforms of the DC voltage supplied X-ray tube. In general, the low ripple voltage waveforms with fast rising times are required to increase with the dosage per unit time lest the exposure time should be longer in orde that the motion artifacts of an object may be eliminated in actual. The conventional types of X-ray generators were bulky in physical size and heavy in weight, and the control accuracies of the output voltages were not always satisfactory. The high frequency switching inverter and converter technology on power conversion and control systems have been greatly closed up introducing new power semiconductor devices. To decreasing the volume and the weight of high voltage transformer, and to stabilize ripple, a high frequency PWM inverter is connected between DC source and high voltage transformer. This paper describes the output characteristics according to stabilize ripple of X-ray tube voltage and compared the reproducibility, direcibility and doesage.

  • PDF

Dual-Output Single-Stage Bridgeless SEPIC with Power Factor Correction

  • Shen, Chih-Lung;Yang, Shih-Hsueh
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.309-318
    • /
    • 2015
  • This study proposes a dual-output single-stage bridgeless single-ended primary-inductor converter (DOSSBS) that can completely remove the front-end full-bridge alternating current-direct current rectifier to accomplish power factor correction for universal line input. Without the need for bridge diodes, the proposed converter has the advantages of low component count and simple structure, and can thus significantly reduce power loss. DOSSBS has two uncommon output ports to provide different voltage levels to loads, instead of using two separate power factor correctors or multi-stage configurations in a single stage. Therefore, this proposed converter is cost-effective and compact. A magnetically coupled inductor is introduced in DOSSBS to replace two separate inductors to decrease volume and cost. Energy stored in the leakage inductance of the coupled inductor can be completely recycled. In each line cycle, the two active switches in DOSSBS are operated in either high-frequency pulse-width modulation pattern or low-frequency rectifying mode for switching loss reduction. A prototype for dealing with an $85-265V_{rms}$ universal line is designed, analyzed, and built. Practical measurements demonstrate the feasibility and functionality of the proposed converter.

Interleaved High Step-Up Boost Converter

  • Ma, Penghui;Liang, Wenjuan;Chen, Hao;Zhang, Yubo;Hu, Xuefeng
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.665-675
    • /
    • 2019
  • Renewable energy based on photovoltaic systems is beginning to play an important role to supply power to remote areas all over the world. Owing to the lower output voltage of photovoltaic arrays, high gain DC-DC converters with a high efficiency are required in practice. This paper presents a novel interleaved DC-DC boost converter with a high voltage gain, where the input terminal is interlaced in parallel and the output terminal is staggered in series (IPOSB). The IPOSB configuration can reduce input current ripples because two inductors are interlaced in parallel. The double output capacitors are charged in staggered parallel and discharged in series for the load. Therefore, IPOSB can attain a high step-up conversion and a lower output voltage ripple. In addtion, the output voltage can be automatically divided by two capacitors, without the need for extra sharing control methods. At the same time, the voltage stress of the power devices is lowered. The inrush current problem of capacitors is restrained by the inductor when compared with high gain converters with a switching-capacitor structure. The working principle and steady-state characteristics of the converter are analyzed in detail. The correctness of the theoretical analysis is verified by experimental results.

Channel and Gate Workfunction-Engineered CNTFETs for Low-Power and High-Speed Logic and Memory Applications

  • Wang, Wei;Xu, Hongsong;Huang, Zhicheng;Zhang, Lu;Wang, Huan;Jiang, Sitao;Xu, Min;Gao, Jian
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.91-105
    • /
    • 2016
  • Carbon Nanotube Field-Effect Transistors (CNTFETs) have been studied as candidates for post Si CMOS owing to the better electrostatic control and high mobility. To enhance the immunity against short - channel effects (SCEs), the novel channel and gate engineered architectures have been proposed to improve CNTFETs performance. This work presents a comprehensive study of the influence of channel and gate engineering on the CNTFET switching, high frequency and circuit level performance of carbon nanotube field-effect transistors (CNTFETs). At device level, the effects of channel and gate engineering on the switching and high frequency characteristics for CNTFET have been theoretically investigated by using a quantum kinetic model. This model is based on two-dimensional non-equilibrium Green's functions (NEGF) solved self - consistently with Poisson's equations. It is revealed that hetero - material - gate and lightly doped drain and source CNTFET (HMG - LDDS - CNTFET) structure can significantly reduce leakage current, enhance control ability of the gate on channel, improve the switching speed, and is more suitable for use in low power, high frequency circuits. At circuit level, using the HSPICE with look - up table(LUT) based Verilog - A models, the impact of the channel and gate engineering on basic digital circuits (inverter, static random access memory cell) have been investigated systematically. The performance parameters of circuits have been calculated and the optimum metal gate workfunction combinations of ${\Phi}_{M1}/{\Phi}_{M2}$ have been concluded in terms of power consumption, average delay, stability, energy consumption and power - delay product (PDP). In addition, we discuss and compare the CNTFET-based circuit designs of various logic gates, including ternary and binary logic. Simulation results indicate that LDDS - HMG - CNTFET circuits with ternary logic gate design have significantly better performance in comparison with other structures.

Low Temperature Synthesis and Characterization of Sol-gel TiO2 Layers

  • Jin, Sook-Young;Reddy, A.S.;Park, Jong-Hyurk;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.353-353
    • /
    • 2011
  • Titanium dioxide is a suitable material for industrial use at present and in the future because titanium dioxide has efficient photoactivity, good stability and low cost [1]. Among the three phases (anatase, rutile, brookite) of titanium dioxide, the anatase form is particularly photocatalytically active under ultraviolet (UV) light. In fabrication of photocatalytic devices based on catalytic nanodiodes [2], it is challenging to obtain a photocatalytically active TiO2 thin film that can be prepared at low temperature (< 200$^{\circ}C$). Here, we present the synthesis of a titanium dioxide film using TiO2 nanoparticles and sol-gel methods. Titanium tetra-isopropoxide was used as the precursor and alcohol as the solvent. Titanium dioxide thin films were made using spin coating. The change of atomic structure was monitored after heating the thin film at 200$^{\circ}C$ and at 350$^{\circ}C$. The prepared samples have been characterized by X-ray diffraction (XRD), scanning electron microcopy, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy (UV-vis), and ellipsometry. XRD spectra show an anatase phase at low temperature, 200$^{\circ}C$. UV-vis confirms the anatase phase band gap energy (3.2 eV) when using the photocatalyst. TEM images reveal crystallization of the titanium dioxide at 200$^{\circ}C$. We will discuss the switching behavior of the Pt /sol-gel TiO2 /Pt layers that can be a new type of resistive random-access memory.

  • PDF

High Ratio Bidirectional DC-DC Converter with a Synchronous Rectification H-Bridge for Hybrid Energy Sources Electric Vehicles

  • Zhang, Yun;Gao, Yongping;Li, Jing;Sumner, Mark;Wang, Ping;Zhou, Lei
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2035-2044
    • /
    • 2016
  • In order to match the voltages between high voltage battery stacks and low voltage super-capacitors with a high conversion efficiency in hybrid energy sources electric vehicles (HESEVs), a high ratio bidirectional DC-DC converter with a synchronous rectification H-Bridge is proposed in this paper. The principles of high ratio step-down and step-up operations are analyzed. In terms of the bidirectional characteristic of the H-Bridge, the bidirectional synchronous rectification (SR) operation is presented without any extra hardware. Then the SR power switches can achieve zero voltage switching (ZVS) turn-on and turn-off during dead time, and the power conversion efficiency is improved compared to that of the diode rectification (DR) operation, as well as the utilization of power switches. Experimental results show that the proposed converter can operate bidirectionally in the wide ratio range of 3~10, when the low voltage continuously varies between 15V and 50V. The maximum efficiencies are 94.1% in the Buck mode, and 93.6% in the Boost mode. In addition, the corresponding largest efficiency variations between SR and DR operations are 4.8% and 3.4%. This converter is suitable for use as a power interface between the battery stacks and super-capacitors in HESEVs.

The Developed Study for SMPS to Protect the Noise and Inrush Current at LED Lighting Source (LED 광원에서 잡음 및 돌입전류 방지를 위한 스위칭모드 전원공급 장치 (SMPS) 개발 연구)

  • Chung, Chansoo;Hong, Gyujang;We, Sungbok;Yu, Geonsu;Kim, Mijin
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.577-582
    • /
    • 2016
  • This Study focused on the development of SMPS (Switching Mode Power Supply) to supply the constant votage and current nevertheless LED fluorescent Light generated the electric noise (with Harmonics) and Inrush current at instant time of turn-on and off. Recently, according to the Green policy in government, the LED fluorescent Lighter showed the rapidly increasing tend as indoor and outdoor Lighter. But, because of costs, LED fluorescent Light not considered and neglected the following items; power factor, efficiency, Harmonics and Inrush current. So, we are developed the SMPS about 3 key issues as follows: 1st, power factor and efficiency is 85%. 2nd, the switching noisy by harmonic is minimized. 3rd, the Inrush current at turn on and off time is reduced the minimum 0.3 A after $100{\mu}sec$ on turnon time. The proposed SMPS adjusted by LNK 409 driver (included the high frequency modulation function). Although, the developed SMPS maintained the about 85% of power factor and efficiency. but, the SMPS must be generated low heat by the variation of minute load current at switching timing. To improve the above weak point, the developed SMPS have the feedback monitoring circuit between input side and output side to maintain the power factor and efficiency. Also, we are studied the time-constant of control circuit to output the constant voltage and current nevertheless the load disturbance of LED lighting. The LED fluorescent Light of 46W is checked the above items.

Wind Energy Interface to Grid with Load Compensation by Diode Clamped Multilevel Inverters

  • Samuel, Paulson;Naik, M. Kishore;Gupta, Rajesh;Chandra, Dinesh
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.271-281
    • /
    • 2014
  • Fluctuating wind conditions necessitate the use of a variable speed wind turbine (VSWT) with a AC/DC/AC converter scheme in order to harvest the maximum power from the wind and to decouple the synchronous generator voltage and frequency from the grid voltage and frequency. In this paper, a combination of a three phase diode bridge rectifier (DBR) and a modified topology of the diode clamped multilevel inverter (DCMLI) has been considered as an AC/DC/AC converter. A control strategy has been proposed for the DCMLI to achieve the objective of grid interface of a wind power system together with local load compensation. A novel fixed frequency current control method is proposed for the DCMLI based on the level shifted multi carrier PWM for achieving the required control objectives with equal and uniform switching frequency operation for better control and thermal management with the modified DCMLI. The condition of the controller gain is derived to ensure the operation of the DCMLI at the fixed frequency of the carrier. The converter current injected into the distribution grid is controlled in accordance with the wind power availability. In addition, load compensation is performed as an added facility in order to free the source currents being fed from the grid of harmonic distortion, unbalance and a low power factor even though the load may be unbalanced, non-linear and of a poor power factor. The results are validated using PSCAD/EMTDC simulation studies.

An autonomous synchronized switch damping on inductance and negative capacitance for piezoelectric broadband vibration suppression

  • Qureshi, Ehtesham Mustafa;Shen, Xing;Chang, Lulu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.501-517
    • /
    • 2016
  • Synchronized switch damping (SSD) is a structural vibration control technique in which a piezoelectric patch attached to or embedded into the structure is connected to or disconnected from the shunt circuit in order to dissipate the vibration energy of the host structure. The switching process is performed by a digital signal processor (DSP) which detects the displacement extrema and generates a command to operate the switch in synchronous with the structure motion. Recently, autonomous SSD techniques have emerged in which the work of DSP is taken up by a low pass filter, thus making the whole system autonomous or self-powered. The control performance of the previous autonomous SSD techniques heavily relied on the electrical quality factor of the shunt circuit which limited their damping performance. Thus in order to reduce the influence of the electrical quality factor on the damping performance, a new autonomous SSD technique is proposed in this paper in which a negative capacitor is used along with the inductor in the shunt circuit. Only a negative capacitor could also be used instead of inductor but it caused saturation of negative capacitor in the absence of an inductor due to high current generated during the switching process. The presence of inductor in the shunt circuit of negative capacitor limits the amount of current supplied by the negative capacitance, thus improving the damping performance. In order to judge the control performance of proposed autonomous SSDNCI, a comparison is made between the autonomous SSDI, autonomous SSDNC and autonomous SSDNCI techniques for the control of an aluminum cantilever beam subjected to both single mode and multimode excitation. A value of negative capacitance slightly greater than the piezoelectric patch capacitance gave the optimum damping results. Experiment results confirmed the effectiveness of the proposed autonomous SSDNCI technique as compared to the previous techniques. Some limitations and drawbacks of the proposed technique are also discussed.