• Title/Summary/Keyword: Low strain rate

Search Result 447, Processing Time 0.025 seconds

A Study of NO Fmission Characteristics in a Non-premixed Counterflow Flame with $H_2/CO_2/Ar$ Blended-fuel (수소/이산화탄소/알곤 혼합 연료의 비예혼합 대향류 화염에서 NO 배출 특성 연구)

  • Lee, Kee-Man
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.146-153
    • /
    • 2007
  • The detailed chemistry with reaction mechanism of GRI 2.11, which consists of 49 species and 279 elementary reactions, have been numerically conducted to investigate the flame structure and NO emission characteristics in a non-premixed counterflow flame of blended fuel of $H_2/CO_2/Ar$. The combination of $H_2,\;CO_2$, and Ar as fuel is selected to clearly display the contribution of hydrocarbon products to flame structure and NO emission characteristics due to the breakdown of $CO_2$. Radiative heat loss term is involved to correctly describe the flame dynamics especially at low strain rates. All mechanisms including thermal, $NO_2,\;N_2O$, and Fenimore are also taken into account to separately evaluate the effects of $CO_2$ addition on NO emission characteristics. The increase of added $CO_2$ quantity causes flame temperature to fall since at high strain rates diluent effect is prevailing and at low strain rates the breakdown of $CO_2$ produces relatively populous hydrocarbon products and thus the existence of hydrocarbon products inhibits chain branching. It is also found that the ratio of the contribution by Fenimore mechanism to that by thermal mechanism in the total mole production rate becomes much larger with increase in the $CO_2$ quantity and strain rate, even though the absolute quantity of NO production is deceased. Consequently, as strain rate and $CO_2$ quantity increase, NO production by Fenimore mechanism is remarkably augmented.

Rate of softening and sensitivity for weakly cemented sensitive clays

  • Park, DongSoon
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.827-836
    • /
    • 2016
  • The rate of softening is an important factor to determine whether the failure occurs along localized shear band or in a more diffused manner. In this paper, strength loss and softening rate effect depending on sensitivity are investigated for weakly cemented clays, for both artificially cemented high plasticity San Francisco Bay Mud and low plasticity Yolo Loam. Destructuration and softening behavior for weakly cemented sensitive clays are demonstrated and discussed through multiple vane shear tests. Artificial sensitive clays are prepared in the laboratory for physical modeling or constitutive modeling using a small amount of cement (2 to 5%) with controlled initial water content and curing period. Through test results, shear band thickness is theoretically computed and the rate of softening is represented as a newly introduced parameter, ${\omega}_{80%}$. Consequently, it is found that the softening rate increases with sensitivity for weakly cemented sensitive clays. Increased softening rate represents faster strength loss to residual state and faster minimizing of shear band thickness. Uncemented clay has very low softening rate to 80% strength drop. Also, it is found that higher brittleness index ($I_b$) relatively shows faster softening rate. The result would be beneficial to study of physical modeling for sensitive clays in that artificially constructed high sensitivity (up to $S_t=23$) clay exhibits faster strain softening, which results in localized shear band failure once it is remolded.

Low cycle fatigue and ratcheting failure behavior of AH32 steel under uniaxial cyclic loading

  • Dong, Qin;Yang, Ping;Xu, Geng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.671-678
    • /
    • 2019
  • In this paper, the low cycle fatigue failure and ratcheting behavior, as well as their interaction of AH32 steel were experimentally investigated under uniaxial cyclic loading. The effects of mean stress, stress amplitude and stress ratio on the low cycle fatigue life and ratcheting strain were discussed. It was found that the ratcheting strain increased while the fatigue life decreased with the increase of mean stress and stress amplitude, and the increasing stress ratio would result in smaller ratcheting and larger fatigue life. Two kinds of failure modes, i.e. low cycle fatigue failure due to crack propagates and ratcheting failure due to large plastic strain will take place respectively. Based on the experimental results, considered the effect of ratcheting on fatigue life, a model with the maximum stress and ratcheting strain rate was proposed. Comparison with the experimental result showed that the new model provided a good prediction for AH32 steel.

A Study on Consolidation Characteristics of Remolded Clay due to the Liquid Limit (액성한계에 따른 재성형 점토의 압밀특성에 관한 연구)

  • Lim, Hyeongmin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.67-74
    • /
    • 2014
  • In this study, a constant rate of strain test (CRS) and oedometer test was performed in order to study the consolidation characteristics to the liquid limit using a re-shaped clay which was preconsolidated at a constant pressure. Consolidation samples were made of kaolinite which was mixed with bentonite of 6 %, 9 %, 12 % and 15 % of it by weight and the test value of liquid limit of samples were appeared in 77 %, 84 %, 88 % and 91 % respectively. And then consolidation samples which were agitated sufficiently adding distilled water 2 times of liquid limit were preconsolidated in the condition of a constant pressure of 0.2 MPa. The oedometer test which is commonly used recently and the consolidation test of constant rate of strain which were applied in 0.001 %/min, 0.004 %/min, 0.01 %/min rate of strain according to ASTM, D4186-82 were performed and the preconsolidation pressures were compared and analyzed at 0.2 MPa preconsolidated pressure. As a result, in the case of low value of liquid limit, preconsolidation pressure was appeared same as 0.2 MPa preconsolidated pressure at the high speed strain rate, and in the case of high value of liquid limit, preconsolidation pressure was appeared same as 0.2 MPa preconsolidated pressure at the low speed strain rate.

An Experimental Study on the Flame Behavior of Opposed Flow Flames in Narrow Channels (좁은 채널 내부의 대향류 화염 거동에 관한 실험적 연구)

  • Lee, Min Jung;Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.9-12
    • /
    • 2012
  • In this study, opposed flow combustion was re-visited in a narrow channel. Various flame behaviors were observed. Due to the confined structure of the combustor in this study, flame structures at very narrow strain rate could be stabilized and their characteristics were investigated. This study will be helpful to understand overall flame behavior of non-premixed flame in a narrow combustion space, and will also be useful to develop small combustors.

  • PDF

Fatigue Life Analysis of SA508 Gr. 1A Low-Alloy Steel under the Operating Conditions of Nuclear Power Plant (원자력발전소 운전환경에서 SA508 Gr. 1A 저합금강의 피로 수명 분석)

  • Lee, Yong Sung;Kim, Tae Soon;Lee, Jae Gon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.50-56
    • /
    • 2010
  • Fatigue has been known as a major degradation mechanism of ASME class 1 components in nuclear power plants. Fatigue damage could be accelerated by combined interaction of several loads and environmental factors. However, the environmental effect is not explicitly addressed in the ASME S-N curve which is based on air at room temperature. Therefore many studies have been performed to understand the environmental effects on fatigue behavior of materials used in nuclear power plants. As a part of efforts, we performed low cycle fatigue tests under various environmental conditions and analyzed the environmental effects on the fatigue life of SA508 Gr. 1a low alloy steel by comparing with higuchi's model. Test results show that the fatigue life depends on water temperature, dissolved oxygen and strain rate. But strain rate over 0.4%/s has little effect on the fatigue life. To find the cause of different fatigue life with ANL's and higuchi's model, another test performed with different heat numbered and heat treated materials of SA508 Gr. 1a. On a metallurgical point of view, the material with bainite microstructure shows much longer fatigue life than that with ferrite/pearlite microstructure. And the characteristics of crack propagation as different microstructure seem to be the main cause of different fatigue life.

  • PDF

NOx Formation and Flame Structure in $CH_4/Air-CO_2$ Counterflow Diffusion Flames ($CH_4/Air-CO_2$ 대향류 확산화염의 NOx 생성 특성 및 화염구조)

  • Han, J.W.;Lee, S.R.;Lee, C.E.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.949-955
    • /
    • 2000
  • Numerical study with detailed chemistry has been conducted to investigate the NOx formation and structure in $CH_4/Air-CO_2$ counterflow diffusion flames. The importance of radiation effect is identified and the role of $CO_2$ addition is addressed to thermal and chemical reaction effects, which can be precisely specified through the introduction of an imaginary species. Also NO separation technique is utilized to distinguish the contribution of thermal and prompt NO formation mechanisms. The results are as follows : The radiation effect is dominant at low strain rates and it is intensified by $CO_2$ addition. Thermal effect mainly contributes to the changes in flame structure and the amount of NO formation but the chemical reaction effect also cannot be neglected. It is noted that flame structure is changed considerably due to the addition of $CO_2$ in such a manner that the path of methane oxidation prefers to take $CH_4 {\rightarrow}CH_3{\rightarrow}C_2H_6{\rightarrow}C_2H_5$ instead of $CH_4 {\rightarrow}CH_3{\rightarrow}CH_2{\rightarrow}CH$. At low strain rate(a=10) the reduction of thermal NO is dominant with respect to reduction rate, but that of prompt NO is dominant with respect to total amount.

  • PDF

An Analysis of Turbine Disk Forging of Ti-Alloy by the Rigid-Plastic Finite Element Method (강소성 유한요소법을 이용한 Ti 합금 터빈디스크의 단조공정 해석)

  • 조현중;박종진;김낙수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2954-2966
    • /
    • 1994
  • The characteristics and good corrosion resistance at room and elevated temperatures led to increasing application of Ti-alloys such as aircraft, jet engine, turbine wheels. In forging of Ti-alloy at high temperature, die chilling and die speed should be carefully controlled because the flow stress of Ti-alloy is sensitive to temperature, strain and strain-rate. In this study, the forging of turbine disk was numerically simulated by the finite element method for hot-die forging process and isothermal forging process, respectively. The effects of the temperature changes, the die speed and the friction factor were examined. Also, local variation of process parameters, such as temperature, strain and strain-rate were traced during the simulation. It was shown that the isothermal forging with low friction condition produced defect-free disk under low forging load. Consequently, the simulational information will help industrial workers develope the forging of Ti-alloys including 'preform design' and 'processing condition design'. It is also expected that the simulation method can be used in CAE of near net-shape forging.

Dry sliding wear behavior of plain low carbon dual phase steel by strain hardening and oxidation (가공경화와 산화층 형성에 의한 이상조직 저탄소강의 건식 미끄럼 마멸 거동)

  • Yu, H.S.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.149-152
    • /
    • 2006
  • Dry sliding wear behavior of low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the dual phase steel was compared with that of a plain carbon steel which was normalized at $950^{\circ}C$ for 30min and then air-cooled. Dry sliding wear tests were carried out using a pin-on-disk type tester at various loads of 1N to 10N under a constant sliding speed condition of 0.2m/sec against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss measured to the accuracy of $10^{-5}g$ by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and a profilomter. Micro vickers hardness values of the cross section of worn surface were measured to analyze strain hardening behavior underneath the wearing surfaces. The were rate of the dual phase steel was lower than the plain carbon steel. Oxidation on the sliding surface and strain hardening were attributed for the higher wear resistance of the dual phase steel.

  • PDF

A Study on the Knee Point of Low-cycle Fatigue Life in High Formability Titanium Alloy SP-700 (티탄계 초소성합금 SP-700의 저사이클 피로수명곡선의 절곡현상에 대하여)

  • ;淸水 眞佐男
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.129-135
    • /
    • 1997
  • Previous studies has shown that the curve of low-cycle fatigue life was not expressed with the single line subjected to Manson-Coffin's law type and bent to short life in low ${\Delta}{\varepsilon}_p$ region. The main cause of this phenomenon has been considered that the localization of plastic strain in the crack initiation process fosters the crack initiation. In this study, the low-cycle fatigue life was investigated for each specimens omitted crack initiation process and it was found that fatigue life curve in log(${\Delta}{\varepsilon}_p$)-log($N_f$)was bent in low ${\Delta}{\varepsilon}_p$ region as ever. Therefore, the main cause of appearance of knee point in fatigue life curve is not found in the crack initiation process but in the crack propagation process. In the crack propagation process, the localization of the plastic strain in the vicinity of crack tip and the influence of test environment on the crack propagation rate were observed and these inclinations were more remarkable in low ${\Delta}{\varepsilon}_p$ region. Hence, it was concluded that these two phenomena in the crack propagation process were proved to the main cause which accelerates the crack propagation in low ${\Delta}{\varepsilon}_p$ region and bent the fatigue life curve in result.

  • PDF