• Title/Summary/Keyword: Low speed vehicle

Search Result 450, Processing Time 0.03 seconds

The Study of Tilting System for EMU Tilting Vehicle (틸팅전동차용 틸팅시스템에 관한 연구)

  • Lee, Su-Gil;Han, Seong-Ho;Song, Yong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1109-1111
    • /
    • 2006
  • Tilting trains are now an established feature of railway operations throughout the world. For intercity traffic, tilt provides operators with increasing speeds, and therefore enhanced competitiveness, on existing routes where insufficient traffic or a lack of funds precludes the construction of a dedicated new high-speed railway. Appling the tilting train, we can expect 30% of speed up on existing lines, but the stability of the electric current would be low because of tilting the train. Also, the spark between the catenary and pantagraph cause environmental problems such as noise, radio wave malfunction. Therefore, the tilting on pantagraph for the power suppling device is very essential for stable electric power supply.

  • PDF

Design of 65kW Class SRM for HEV (65kW급 HEV용 SRM의 설계)

  • Kim, Tae-Hyoung;Ahn, Jin-Woo;An, Young-Joo;Moon, Jae-Won
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.562-564
    • /
    • 2005
  • This paper presents the reasonable design parameters of a SRM for hybrid electric vehicle driving. For the design of SRM, the initial model is designed using the equivalent magnetic circuit method. In order to optimize the SRM for HEV. The initial model is redesigned by FEM with the variation of the stock length and turns of winding. This paper shows that a flat-topped current of a phase can be made from a change of the stack length and the number of turns for high efficiency, high average torque and a lower torque ripple. The change of current falling time as a variation of turn-off angle was shown by FEA. The iron loss and copper loss were described. The torque of the redesigned motor is suitable for low and high speed ranges to drive a HEV that was verified by the speed-torque curve.

  • PDF

Voltage Angle Control of an IPMSM for Electric Vehicle Drives (전기자동차 구동을 위한 IPMSM의 전압각 제어)

  • Ko, Tae-Hoon;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.397-403
    • /
    • 2017
  • This paper studies the voltage angle control of interior permanent magnet synchronous motors (IPMSMs). For voltage angle control, the optimum voltage angle trajectory according to the operating speed is researched while the voltage and current limit conditions are considered. Through research, two different optimum voltage angle trajectories that depend on the design of IPMSMs were found. The IPMSM drive based on a voltage angle control that follows such trajectory is proposed. Unlike the conventional voltage angle control method, which is applied only in the flux-weakening region, the proposed voltage angle control can be implemented in all operation ranges from low to high speed. The proposed method is verified by experiments using a DSC controller for 800 W IPMSM.

The Study of Tilting Control System for Tilting Vehicle (틸팅차량 틸팅제어장치 연구)

  • Lee, Su-Gil;Han, Seong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.253-255
    • /
    • 2005
  • Tilting trains are now an established feature of railway operations throughout the world. For intercity traffic, tilt provides operators with increasing speeds, and therefore enhanced competitiveness, on existing routes where insufficient traffic or a lack of funds precludes the construction of a dedicated new high-speed railway. Appling the tilting train, we can expect 30% of speed up on existing lines, but the stability of the electric current would be low because of tilting the train. Also, the spark between the catenary and pantagraph cause environmental problems such as noise, radio wave malfunction. Therefore, the tilting on pantagraph for the power suppling device is very essential for stable electric power supply.

  • PDF

Design and Control of SRM For LSEV Drive

  • Lee, Hee-Chang;Lee, Man-Hyung;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.96-101
    • /
    • 2004
  • This paper presents an application of SRM drive for LSEV(Low Speed Electric Vehicle). In this paper, a 5〔㎾〕 SRM for a traction of a LSEV is to design and investigate the characteristics of the drive system. The main design parameters and control strategy are given. In the control method, a current control, for the soft-starting technique at a starting operation, is adopted. In the high speed range, an angle control technique is implemented, for a high efficiency drive of SRM. Some experimental tests are executed to find the drive performances.

The Study of Tilting Control System for EMU Tilting Vehicle (전기식 틸팅차량의 틸팅제어장치 구성방안 연구)

  • Lee Su-Gil;Han Seong-Ho;Song Yong Soo;Lee Woo-Dong;Han Young-Jae
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1457-1459
    • /
    • 2004
  • Tilting trains are now an established feature of railway operations throughout the world. For intercity traffic, tilt provides operators with increasing speeds, and therefore enhanced competitiveness, on existing routes where insufficient traffic or a lack of funds precludes the construction of a dedicated new high-speed railway. Appling the tilting train, we can expect $30\%$ of speed up on existing lines, but the stability of the electric current would be low because of tilting the train. Also, the spark between the catenary and pantagraph cause environmental problems such as noise, radio wave malfunction. Therefore, the tilting on pantagraph for the power suppling device is very essential for stable electric power supply.

  • PDF

Design and Construction of a Quad Tilt-Rotor UAV using Servo Motor

  • Jin, Jae-Woo;Miwa, Masafumi;Shim, Joon-Hwan
    • Journal of Engineering Education Research
    • /
    • v.17 no.5
    • /
    • pp.17-22
    • /
    • 2014
  • Unmanned aerial vehicles (UAVs) that have been recently commercialized can largely be divided into fixed-wing aircraft and rotor aircraft by their styles and flight characteristics. Although the fixed-wing aircraft represents higher power efficiency, higher speed, longer flight distance and larger loading weight than the rotor aircraft, they have a disadvantage of requiring a space for take-off and landing. On the other hand, the rotor aircraft can implement vertical take-off and landing (VTOL) and represents various flight modes (hovering, steep bank turns and low-speed flights). But they require both precision take-off control and attitude control. In this study, we used a quad-tilt rotor UAV to combine advantages in both the fixed-wing aircraft and the rotor aircraft. The quad-tilt rotor (QTR) system was designed and constructed by adding a tilt device with a servo motor to a general quad-rotor vehicle.

Design and Drive Characteristics of SRM for HEV (HEV용 SRM의 설계 및 구동특성)

  • Kim, Tae-Hyoung;Ahn, Jin-Woo;An, Young-Joo;Moon, Jae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1141-1143
    • /
    • 2005
  • This paper presents the reasonable design parameters of a SRM for hybrid electric vehicle driving. For the design of SRM, the initial model is designed using the equivalent magnetic circuit method. In order to optimize the SRM for HEV. The initial model is redesigned by FEM with the variation of the stock length and turns of winding. This paper shows that a flat-topped current of a phase can be made from a change of the stack length and the number of turns for high efficiency, high average torque and a lower torque ripple. The change of current falling time as a variation of turn-off angle was shown by FEA. The iron loss and copper loss were described. The torque of the redesigned motor is suitable for low and high speed ranges to drive a HEV that was verified by the speed-torque curve.

  • PDF

The Study of Tilting Control System for EMU Tilting Vehicle (틸팅전동차용 틸팅제어장치 개발에 관한 연구)

  • Lee, Su-Gil;Han, Seong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1628-1630
    • /
    • 2005
  • Tilting trains are now an established feature of railway operations throughout the world. For intercity traffic, tilt provides operators with increasing speeds, and therefore enhanced competitiveness, on existing routes where insufficient traffic or a lack of funds precludes the construction of a dedicated new high-speed railway. Appling the tilting train, we can expect 30% of speed up on existing lines, but the stability of the electric current would be low because of tilting the train. Also, the spark between the catenary and pantagraph cause environmental problems such as noise, radio wave malfunction. Therefore, the tilting on pantagraph for the power suppling device is very essential for stable electric power supply.

  • PDF

Analysis of the Kart Frame Twisting Characteristics using 4 Wheel Motion Measurement (4륜 거동 측정에 의한 카트 프레임의 비틀림특성 분석)

  • Kim, Y.H.;You, C.J.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.71-78
    • /
    • 2011
  • A kart is a vehicle without the suspension system and the differential gear. The kart frame as an elastic body plays the role of a spring. By the cornering of a kart, rolling, pitching and twisting motions are induced in the kart frame. Also the slip or noncontact of the wheel and a permanent deformation of the kart frame can be induced. In order to examine closely this phenomenon, measurement on height-displacements with various sensors and tracking system and analysis on the kart frame twisting characteristics with the rolling and pitching angle are needed. According to the measurement result, while driving in a curve at high speed the kart frame is quite twisted. Analysis on the measurement results shows that a kart used primarily in high speed requires a frame with low torsional stiffness and a frame material with high tensile strength and large elongation.