• Title/Summary/Keyword: Low slump

Search Result 120, Processing Time 0.029 seconds

A Study on Field Application of 150MPa Ultra Strength Surface-Exposed Concrete (150MPa급 초고강도 노출콘크리트의 현장적용에 관한 연구)

  • Kong, Tae-Woong;Lee, Soo-Hyung;Jang, Jae-Hwan;Lee, Han-Baek
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.989-992
    • /
    • 2008
  • In this paper, we are presenting a case that integrates ultra high strength concrete(150MPa) with surface-exposed concrete. Ahead of the field application, we carried out laboratory experiment and B/P Test for a basic property of concrete(slump flow, air content, 50cm flow time, elapse time change and compression strength) and productivity. The next, we conducted Mock-up Test using simulation specimen to evaluate infilling, surface-finishing and hydration heat of concrete. We had satisfactory results for a basic property and hydration heat of concrete. However at the time of field application, it was occurred rupture of formwork because of high lateral pressure of concrete, and then formwork was reinforced and case-in-place time was adjusted. And regardless of low and high frequency vibration, it occurred to surface-pockmark. In case that applies ultra high strength concrete to surface-exposed concrete, we estimate that it is important of systematic management and improvement of construction.

  • PDF

A Experimental Study on the Property of Lightweight Aggregate Concrete Using Hollow Micro Sphere (유리질 중공 미소 구체를 사용한 경량골재콘크리트의 특성에 관한 실험적 연구)

  • Kim, Sang Heon;Kim, Se Hwan;Park, Young Shin;Jeon, Hyun Gyu;Seo, Chee Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.177-183
    • /
    • 2015
  • In this study, the thermal conductivity, physical and mechanical properties of lightweight aggregate concretes with hollow micro sphere(HMS) are experimentally examined as a basic research for the development of structural insulation concrete. As the results of this experiment, in the case of concrete mixed with HMS, the value of slump has been reduced, so it is found that the dosage of superplasticizer should be increased. As the replacement ratio of HMS increases, it has shown that the compressive strength is somewhat decreased due to the low interfacial adhesion strength of HMS. But the thermal conductivity is found to be greatly improved with the replacement ratio of HMS increases, the thermal conductivity of HMS shows the lower value of 68% at lightweight aggregate concrete and 32% of normal concrete. Also it is found that the compressive strength is decreased and thermal conductivity is increased as the water-cement ratio increases. The most outstanding for insulation performance is observed when using 20% of HMS and 50% of water-cement ratio.

Evaluation of Horizontal Shear Strength of Prestressed Hollow-Core Slabs with Cast-in-Place Topping Concrete (프리스트레스트 중공 슬래브와 현장타설된 토핑콘크리트의 수평전단성능 평가)

  • Im, Ju-Hyeuk;Park, Min-Kook;Lee, Deuck-Hang;Seo, Soo-Yeon;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.741-749
    • /
    • 2014
  • Prestressed hollow-core (PHC) slabs are structurally-optimized lightweight precast floor members for long-span concrete structures, which are widely used in construction markets. In Korea, the PHC slabs have been often used with cast-in-place (CIP) topping concrete as a composite slab system. However, the PHC slab members produced by extrusion method use concrete having very low slump, and it is very difficult to make sufficient roughness on the surface as well as to provide shear connectors. In this study, a large number of push-off tests was conducted to evaluate interfacial shear strengths between PHC slabs and CIP topping concrete with the key variable of surface roughness. In addition, the horizontal shear strengths specified in the various design codes were evaluated by comparing to the test results that were collected from literature.

A Study on the Operation of Ship Supply Common Logistics in Utilizing the Busan Port International Ship Supply Center (부산항국제선용품유통센터를 활용한 선용품 공동물류 운영방안에 관한 연구)

  • Min, Se-Hong;Choi, Hoon-Do;Yun, Eun-Yeong;Kang, Dal-Won;Kim, Yul-Seong
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.553-559
    • /
    • 2015
  • The Korean Ship Supply market scale estimated at 5.7 trillion won in 2014. Much activated and related 400 of companies located in Busan, Ulsan near Busan area. But there have many companies had lower average revenue like a 2 billion won, Also the economic slump of world maritime port industry and low priced ship supply manufacture like as China and Other developing countries, those things made a gloomy situation in domestic industry. Therefore, in this study focused on Ship Supply Common Logistics for activation plan of Ship Supply Industry. And also determine which factor is most important to Ship Supply Common Logistics and analyzed AHP and IP analysis on 16 factors based on literature review. The result, most important factor was cost for Ship Supply Common Logistics.

A Fundamental Test of Temperature Crack Reduction Method Application by Setting Time Control of Large-Scaled Mat Foundation Mass Concrete (초대형 매트기초 매스 콘크리트의 응결시간조정에 의한 온도균열저감 공법적용의 기초적 실험)

  • Han, Cheon-Goo;Lee, Jae-Sam;Noh, Sang-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.3
    • /
    • pp.95-101
    • /
    • 2009
  • Constructing large-scale mat foundation mass concrete is increasing for the stability of building structure, because a lot of high rise building are being built in order to make full use of limited space. However, It is of increasing concerns that because limited placing equipments, available job-site and systems for mass concete placement in construction field do not allow to place great quantity of concrete at the same time in large scale mat foundation, consistency between placement lift can not be secured. And also, it is likely to crack due to stress caused by the difference of hydration heat generation time. To find out the solution against above problems, this study is to reconfirm the performance of normal concrete designed by mix proportion and super retarding concrete. The Fundamental test shows what happens if low heat proportioning and control method of setting time are applied at the job-site of newly constructed high rise building. The test result show that slump flow of concrete has been somewhat increased as the target retarding time gets longer, while the air content has been slightly decreased but this is no great difference from normal concrete. The setting time shows to be retarded as target retarding time gets longer, the range of retarding time increases. It is necessary to increase the amount of mix of super retarding agent in the proportion ration by setting curing temperature high since outdoor curing is about 6 hours faster than standard curing, which means the temperature of the concrete will be higher than the temperature of the surrounding environment, due to its high hydration heat when applying in a construction site. The compressive strength of super retarding concrete appears to be lower than normal concrete due to the retarding action in the early stage. However, as the time goes by, the compressive strength gets higher, and by the 28th day the strength becomes the same or higher than normal concrete.

Evaluation of Shrinkage Properties Based on Mock-Up Testin High Performance Concrete (Mock-Up 시험에 의한 고성능 콘크리트의 수축특성 분석)

  • Han, Cheon-Goo;Kang, Su-Tae;Koh, Kyung-Taek;Hann, Chang-Pyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.106-114
    • /
    • 2006
  • This paper investigates the fundamental properties and shrinkage characteristics of low shrinkage high performance concrete(LSHPC), using mock-up specimens. According to the test results, the most suitable mix proportions of LSHPC need a higher dosage of SP agent and AE agent, in order to obtain the target of slump flow and air content. This is due to reduce fluidity and air content respectively. It also presented earlier setting time than control concrete by 6 hours and exhibited compressive strength of 60MPa at age 28 days. Autogenous shrinkage of LSHPC was the half of the value of control concrete. Drying shrinkage of center section of LSHPC showed similar tendency with autogenous shrinkage, because of no internal moisture movement, while surface section had larger drying shrinkage. The specimen with embedded reinforcing bar had smaller deformation owing to confinement of reinforcing bar.

Compressive Strength and Chloride Permeability of High Strength Concrete according to the Variety of Mineral Admixtures (광물질혼화재 종류별 고강도콘크리트의 압축강도 및 촉진 염소이온침투 특성)

  • Moon Han-Young;Kim Byoung-Kwon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.407-414
    • /
    • 2004
  • The purpose of this study is to evaluate the ability to resist chloride ions penetration of the concrete structure under marine environment in south-east asia especially. In this study, high strength concrete(HSC) with various combination of ordinary portland cement(OPC), blast-furnace slag(SG) and silica fume(SF) are cured 23 and $35^{\circ}C$ considering the site weather, and are cured in water for 3, 7 or 56 days respectively. And to investigate the fundamental properties and the resistance of chloride penetration of various HSC, setting time, slump flow, compressive strength, void and ASTM C 1202 test were conducted. Test results show that the compressive strength of HSC is similar regardless of SG replacement ratio and total charge passed of chloride is the smallest at 40% replacement of SG. The compressive strength of G4FS HSC is, besides, outstandingly high at early age compare with other HSC, but the compressive strength of G4F HSC, which is vary according to curing temperature and condition, most high at the age after 7 days. Total passed charge of HSC get larger in the order G4FS

An Empirical Study on the Risk Diversification Effect of REITs (리츠의 투자위험 분산화 효과에 대한 실증연구)

  • Cho, Kyu-Su;Lee, Sang-Hyo;Kim, Jae-Jun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.1
    • /
    • pp.23-31
    • /
    • 2013
  • Following the U.S sub-prime mortgage crisis and a slump in properties market, the probability is rising that housing investment would not yield high profit as it used to do until early 2000s. For this reason, the nature of properties market is undergoing a change from a source of lucrative investment to a source of a relatively low but stable profit, such as profit-oriented real estate. This trend is likely to promote REITs market, which is a leading product for indirect investment. Until now, the REITs market has been growing slowly compared to a general housing market or financial markets. However, as the importance of risk management based on portfolio theories increases, stable profit generation of REITs can be effective in risk management. This study conducts an empirical analysis on how investment risks can be diversified by including REITs-a source of relatively stable profit in the equity market-in investment portfolio. The analysis results showed that, similar to food and beverage stocks of highly defensive nature, REITs has a relatively weak correlation with KOSPI that reflects the overall market performance. It also showed very low standard deviation in case of minimum variance portfolio. This suggests that including REITs in investment portfolio can be as effective as including food and beverage stocks for risk diversification. Due to uncertainties, investment always accompanies risks, and balancing potential profits and risks is essential.

Analysis of Fundamental Properties of Concrete Using Mix of Coarse Aggregate With Formation Causes (성인이 다른 굵은 골재를 혼합사용한 콘크리트의 기초적 특성 분석)

  • Noh, Sang-Kyun;Kim, Young-Hee;Kim, Jeong-Bin;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • Recently, attempts of replacing some of natural aggregate with mix of low quality aggregate are carried out for stable supply of aggregate. However, low quality aggregate such as recycled aggregate produced during the disposal process of construction wastes and by-product aggregate produced by industrial activities has problem of failing to comply to KS Standards. Therefore, we have compared fundamental properties of concrete by using granite crushed aggregate, recycled aggregate, blast furnace and electric arc furnace slag aggregate for effective utilization of lacking aggregate resources. As the result, slump in case of mixed use of aggregate was increased 0~10% compared to single use. Therefore, it is judged to be economically advantageous as it can expect effects in unit quantity or reduction of SP agent. Compressive strength in case of mixed use of aggregate was increased 0~10% compared to single use as it filled internal crevice of concrete with continuous particle size distribution. Accordingly, if we utilize by satisfying standard particle scope through mix of aggregate with different cause of formation in proper ratio, it was possible to confirm utility of mixed aggregate with demonstration of effects of increases of fluidity and compressive strength of concrete.

Properties of Hot Weather Nuclear Power Plant Concrete with Water Cooling Method and Retarding used (배합수 냉각방법 및 지연제 사용에 따른 서중 원전콘크리트의 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Jang, Seok-Soo;Yeo, In-Dong;Choi, Jong-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4602-4609
    • /
    • 2013
  • In summer and winter, the difference between the temperature during the day and that during the night is high, which leads to various problems during concrete placement, such as cracks and defects in the concrete as well as low durability and strength. Although nuclear power plant concrete is widely used for placement in all seasons, particular attention must be paid to its quality during the summer. Therefore, we evaluated the effects of a cooling method for mixing water, which is a commonly used hot weather precooling method, and the use of a retarder, on the characteristics of Nuclear Power Plant concrete. In the cooling method for mixing water, cold water at 5 was used, with 50% of the water content consisting of ice flakes. The effects of using a retarder were evaluated by reviewing the characteristics of the cement at the unset stage and after hardening. To evaluate the characteristics of the unset cement, we measured the slump, air volumes, setting times, and pressure strengths after hardening. Furthermore, we measured the heat of hydration at different temperatures; the loss of heat was minimized using insulation. Both the slump time and the complete ageing time of the air volume were found to be 120 min at $20^{\circ}C$ and 40 min at $40^{\circ}C$. In the case when the cooling method for mixing water was used and in the case when a retarder was used, the initial and final sets by penetration resistance were delayed, and the delay decreased with increasing air temperature. For the heat of hydration, the cooling method for mixing water not only lowered the maximum temperature but also delayed its attainment. However, the use of a retarder had no effect on the maximum temperature. Moreover, in the early ages (e.g., 3 and 7 days), the pressure strength of the concrete was lower than that of plain cement. However, the strength of 28-day concrete met the standard construction specifications.