• 제목/요약/키워드: Low resistance measurement

검색결과 261건 처리시간 0.025초

저전압에서의 통전전류를 이용한 인체의 동저항 측정 및 예측 (Measurement and Estimation of Dynamic Resistance of the Human Body Using Body Current at Low-Voltage Levels)

  • 김두현;강동규;김상철
    • 한국안전학회지
    • /
    • 제16권1호
    • /
    • pp.37-42
    • /
    • 2001
  • The severity of electric shock is entirely dependent on body resistance. When the human body becomes a part of electric circuit, the body resistance is given as a function of shock scenario. Factors which consist of applied voltage, shock duration, body current path and contact area, etc.. The body resistance is defined as the voltage applied to subjects divided by the body current. To secure safety of the subjects, the experiment is conducted on 10 subjects, the body current is limited to 4mA. And only three factors under many shock scenario conditions are used to determine the body resistance. The three factors are the applied voltage, the current pathway and the contact area. The object of this work is to estimate the dynamic resistance of the human body as a function of applied voltage using the body current at low-voltage levels. The data of the body current at low-voltage levels are extrapolated to high-voltage levels using two analytic functions with specified constants calculated by numerical method. Also we can provide permissible body voltage for various copper electrodes on the basis of the data determined with the dynamic resistance and the body current.

  • PDF

As Te Ge Si 무정형 반도체의 온도영향 (A study of the effect of the temperature on the As Te Ge Si amorphous semiconductor)

  • 박창엽
    • 전기의세계
    • /
    • 제23권6호
    • /
    • pp.49-55
    • /
    • 1974
  • Amorphous semiconductor from As 30 Te 48 Ge 10 Si 12 was prepared, and studied electron microscopy, X-ray analysis and resistivity measurement. It's resistivity is 1.56*10$^{6}$ .ohm.-cm when small ampule is used for preparing sample it is found that no phase separation has occurced by electron microscopy, and that phase transition temperature is 232.deg. C by differential Thermal Analysis. The specimen showed threshold switching that the low resistance state occur at critical electric field and the resistance recover at low applied field. Critical electric field of the switching is 10$^{5}$ V/cm at room temperature. Threshold voltage secreace exponentially with increasing ambient temperature and at that each voltage resistance of the switching device increase exponentially. According to the series resistance and applied vottage current slope on the V-I curve is varied. When applied voltage is decreased after switching, the resistance of the switching device is increased. By this result the origin of the switching is the Joule's heating.

  • PDF

A Study on Composites of Ethylene-Vinyl Acetate Copolymer and Ethylene-Propylene-Diene Rubber with Aluminum Hydroxide as a Fire Retardant

  • Lee, Yu Jun;Lee, Su Bin;Jung, Jae Young;Lee, Dam Hee;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • 제51권2호
    • /
    • pp.93-98
    • /
    • 2016
  • The composites of EVA/EPDM including aluminum trioxide (ATH) as a fire retardant were manufactured for the purpose of improving low temperature property and flame resistance in the rubbery materials. The ratio of EVA to EPDM didn't affect the flame resistance of the rubber composites. The addition of ATH resulted in increase of the flame resistance. In the evaluation of the cold resistance, the increasing EPDM content showed enhancement of cold resistance in the composites due to increasing low Tg EPDM. It was found out that tensile strengths of the composites showed a maximum value at 100 phr of ATH by reinforcing effect, but a minimum value at 200 phr of ATH owing to slippage between the flame retardant by the external stress. In the measurement of solvent resistance in tetrahydrofuran, the increasing ATH content yielded enhancement of solvent resistance by reducing swelling of the composite, and increasing EPDM content also resulted from increase of the solvent resistance by reduction of polarizability as well as increase of crosslink in the composites.

ADIS16480 관성측정장치를 이용한 선체 운동 측정 시스템에 관한 연구 (A Study on Ship Motion Measurement System Using ADIS16480 Inertial Measurement Unit)

  • 김대정;임정빈
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2019년도 추계학술대회
    • /
    • pp.270-270
    • /
    • 2019
  • 관성측정장치(Inertial Measurement Unit)는 선박, 잠수함, 항공기 등 여러 응용분야에서 적용되어 자세 측정 영역에 주로 사용되고 있지만, 이런 장비는 고가의 장비이기 때문에 특수 분야에서만 한정적으로 이용되어 왔다. 본 연구에서는 저가의 관성측정장치(Inertial Measurement Unit)를 이용하여 실시간으로 선박의 속도와 방향, 중력, 가속도를 측정함으로써 선박의 감항성을 확인하며, 더 나아가 실선 선박의 저항 및 조종성능 추정을 위한 유체력 미계수 추정을 위한 연구방법을 고안하였다. 이에 본 연구는 실제 해상에서 선체 운동요소를 계측하고, 계측된 데이터의 처리 및 해석을 통하여 선박의 종합적인 안전성 평가 및 실선의 저항 및 조종성능 추정을 행하였다.

  • PDF

경혈 저항특성에 관한 연구(II) (A Study on the Acupuncture Point Resistance Characteristics(II))

  • 김응수;한순천;최태종;김정국;허웅;박영배
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(5)
    • /
    • pp.69-72
    • /
    • 2001
  • In this paper, we study about a acupuncture point and a non-acupuncture point resistance characteristics for acupuncture research. For this study, we devised resistance variation measurement system. This system is consist of 4-channel skin resistance measuring parts, filters, 12bit A/D convertor, 8051 micro-controller, and personal computer The developed system insert a low current to skin and obtains voltages from standard resistor that is convected to measurement circuit in series. The obtained voltage is converted to 12bit digital signal. Therefore the converted signal is changed to skin resistance by calculation in the personal computer. As the results of experiment, the resistance of acupuncture point and non-acupuncture point are different from each other. The acupuncture point has very fast current flows than the other non- acupuncture point.

  • PDF

Thermal Analysis and Optimization of 6.4 W Si-Based Multichip LED Packaged Module

  • Chuluunbaatar, Zorigt;Kim, Nam Young
    • 한국통신학회논문지
    • /
    • 제39C권3호
    • /
    • pp.234-238
    • /
    • 2014
  • Multichip packaging was achieved the best solution to significantly reduce thermal resistance at the same time, to increase luminance intensity in LEDs packaging application. For the packaging, thermal spreading resistance is an important parameter to get influence the total thermal performance of LEDs. In this study, silicon-based multichip light emitting diodes (LEDs) packaged module has been examined for thermal characteristics in several parameters. Compared to the general conventional single LED packaged chip module, multichip LED packaged module has many advantages of low cost, low density, small size, and low thermal resistance. This analyzed module is comprised of multichip LED array, which consists of 32 LED packaged chips with supplement power of 0.2 W at every single chip. To realize the extent of thermal distribution, the computer-aided design model of 6.4 W Si-based multichip LED module was designed and was performed by the simulation basis of actual fabrication flow. The impact of thermal distribution is analyzed in alternative ways both optimizing numbers of fins and the thickness of that heatsink. In addition, a thermal resistance model was designed and derived from analytical theory. The optimum simulation results satisfies the expectations of the design goal and the measurement of IR camera results. tart after striking space key 2 times.

고기능성 투습방수 소재의 저온굴곡 시험방법 개선 연구 (A Study on Improvement of the low temperature flex resistance test method about high waterproof materials)

  • 이민희;문선정;고혜지;홍성돈
    • 품질경영학회지
    • /
    • 제46권3호
    • /
    • pp.425-440
    • /
    • 2018
  • Purpose: This study is aimed at developing of the flex resistance testing process at low temperature with the waterproof fabric to suit the military environment, and is designed to fit for the purpose of the waterproof materials in order to optimize the test method by finding out matters to improve from existing the test method and through previous studies. Methods: The test method, which has been applied to flex resistance of existing water-repellent materials, was improved and consequently, differentiated test results could be obtained according to the test temperature, sample size, and flexing method. Results: The testing of the total of 8 samples revealed that performance of the military requirement could hardly be met just by presenting the materials or 2~3 layers when the quality criteria for high functional water repellent fabrics were applied. PTFE(Polytetrafluoroethylene) is preferred to PU(Polyurethane) to be used in the extremely low-temperature environment, but durability under the low-temperature environment may be varied depending on film thickness or laminating technique even if the materials of waterproof films are identical. Therefore, in addition to the material or texture, the test method capable of reflecting durability under the low-temperature environment shall be suggested, and the newly designed test method proposed in this study was shown to suggest differentiated quality criteria by the material. Conclusion: The water resistance measurement and the test method following flex resistance with expanded range of flex will enable the differentiable test of the samples according to the number of repetition. This study is meaningful in that it suggests a differentiable test method capable of establishing a basis of deciding suitable material when selecting military goods made of water repellent material by properly improving the test method.

지중선로의 분포 온도 측정 시스템 개발 (Development of optical temperature distribution measurement system for Underground Power Transmission tunnel)

  • 이근양;송우성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.766-768
    • /
    • 1998
  • Optical Temperature Distribution measurement System (OTDS) is completely different from conventional electric point sensor in that it uses the optical fiber itself as the sensor. This new concept in temperature measuring system requires only one fiber to be laid. The use of optical fiber also gives the advantage of small diameter, light weight, explosion resistance, and electromagnetic noise resistance. The OTDS is a sensor which is capable of making a precise measurement over a wide range of areas using only a single optical fiber. Since current temperature sensors, such as the thermocouple, are only used to measure temperaturea of point, they are almost impractical for measuring a wider range because of the extremely high cost. In comparision with current sensors, the optical fiber distributed temperature sensor can make much quicker and more precise measurements at a comparatively low cost.

  • PDF

나노클레이 첨가에 따른 할로겐프리 난연컴파운드의 수직난연 특성 향상에 관한 연구 (A Study on Perpendicular Flame Retardant Characteristic Improvement of Halogen-free Flame Retardant Compounds by Nanoclay Addition)

  • 황찬연;양종석;성백용;김지연;박대희
    • 한국전기전자재료학회논문지
    • /
    • 제28권1호
    • /
    • pp.51-56
    • /
    • 2015
  • The object of this study is to obtain the optimum mix proportion of halogen free compound with flame resistance and, for the purpose, thermal/electrical characteristics test are conducted using compatibilizing agents, flame resistance agents, hydroxide aluminum, sunscreen, antioxidant and silicon oil on the base resin of linear low density polyethylene (LLDPE), Ethylene vinyl acetate copolymer (EVA). Existing compound method accompanies many requirements to be satisfied including a lot of addition of flame resistance agents, prohibition of impact on mixing capability with base and property and etc. In this study, different from the existing method, the optimum mix proportion is determined and experimented by adding nano clay. Oxygen index test shows no difference between specimens while T-6, T-9 shows oxygen index of 29[%] and 26[%], respectively. This is concluded that hydroxide aluminum, which is a flame resistance agent, leads low oxygen index. From UL94-V vertical flame resistance test, the combustion behavior is determined as V-0, Fail based on UL94-V decision criteria. Viscometry shows low measurements in specimens with separate addition of compatibilizing agents or nano clay. Volume resistivity test shows low measurement mainly in specimens without compatibilizing agents. Therefore, with the flame resistance compound shows better performance for thermal/electrical property and the optimum mix proportion are achieved among many existing materials.

Neutron irradiation impact on structural and electrical properties of polycrystalline Al2O3

  • Sunil Kumar;Sejal Shah;S. Vala;M. Abhangi;A. Chakraborty
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.402-409
    • /
    • 2024
  • High energy neutron irradiations impact on structural and electrical properties of alumina are studied with particular emphasis on real time in-situ radiation induced conductivity measurement in low flux region. Polycrystalline Al2O3 samples are subjected to high energy neutrons produced from D-T neutron generator and Am-Be neutron source. 14 MeV neutrons from D-T generator are chosen to study the role of fast neutron irradiation in the structural modification of samples. Real time in-situ electrical measurement is performed to investigate the change in insulation resistance of Al2O3 due to radiation induced conductivity at low flux regime. During neutron irradiation, a significant transient decrease in insulation resistance is observed which recovers relative higher value just after neutron exposure is switched off. XRD results of 14 MeV neutron irradiated samples suggest annealing effect. Impact of relatively low energy neutrons on the structural properties is also studied using Am-Be neutrons. In this case, clustering is observed on the sample surface after prolonged neutron exposure. The structural characterizations of pristine and irradiated Al2O3 samples are performed using XRD, SEM, and EDX. The results from these characterizations are analysed and interpreted in the manuscript.