• Title/Summary/Keyword: Low pressure plasma

Search Result 478, Processing Time 0.033 seconds

Plasma-Sprayed $Al_2O_3-SiO_2$ Multi-Oxide Films on Stainless Steel Substrate

  • Korobova, N.;Soh, Deawha
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.116-119
    • /
    • 2000
  • The advantage of plasma-sprayed coating is their good resistance against thermal shock due to the porous state of the coated layer with a consequently low Youngs modulus. However, the existence of many pores with a bimodal distribution and a laminar structure in the coating reduces coating strength and oxidation protection of the base metals. In order to counteract these problems, there have been many efforts to obtain dense coatings by spraying under low pressure or vacuum and by controlling particle size and morphology of the spraying materials. The aim of the present study is to survey the effects of the HIP treatment between 1100 and 130$0^{\circ}C$ on plasma-sprayed oxide coating of A1$_2$O$_3$, A1$_2$O$_3$-SiO$_2$on the metal substrate (type C18N10T stainless steel). These effects were characterized by phase identification, Vickers hardness measurement, and tensile test before and after HIPing. These results show that high-pressure treatment has an advantage for improving adhesive strength and Vickers hardness of plasma-sprayed coatings.

  • PDF

High-Speed Deposition of Diamond Films by DC Plasma Jet (직류 플라즈마 제트를 이용한 고속 다이아몬드 막 증착기술)

  • Kim, Won-Kyu;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.949-951
    • /
    • 1992
  • A low pressure DC plasma jet has been used to obtain diamond films from a mixture of $CH_4$ and $H_2$ with high deposition rate (>1$\mu\textrm{m}$/min). The effects of the deposition conditions such as torch geometry, substrate temperature, gas mixing ratio, chamber pressure, axial magnetic field on the diamond film properties such as morphology, purity, uniformity of the film and deposition rate, etc. have been examined with the aid of Scanning Electron Microscopy, X-Ray Diffraction, and Raman Spectroscopy. Both the growth rate and particle size increased rapidly for low methane concentrations but saturated and the morphology changed from octahedral to cubic structure when the concentration exceeded 1.0 %. Higher growth rates (>1.5${\mu}m$/min) can be obtained by applying an axial magnetic field to the DC plasma jet. Diamond obtained from the magnetized plasma jet also shows a sharp peak at 1332.5$cm^{-1}$ in the Raman Spectra and this result implies that higher growth rate with a good quality diamond films can he obtained by applying an external magnetic field to the plasma jet.

  • PDF

Plasma-Sprayed $Al_{2}O_{3}-SiO_{2}$ Multi-Oxide Films on Stainless Steel Substrate

  • Korobova, N.;Soh, Deawha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.116-119
    • /
    • 2000
  • The advantage of plasma-sprayed coating is their good resistance against thermal shock due to the porous state of the coated layer with a consequently low Youngs modules. However, the existence of many pores with a bimodal distribution and a laminar structure in the coating reduces coating strength and oxidation protection of the base metals. In order to counteract these problems, there have been many efforts to obtain dense coatings by spraying under low pressure or vacuum and by controlling particle size and morphology of the spraying materials. The aim of the present study is to survey the effects of the HIP treatment between 1100 and 130$0^{\circ}C$ on plasma-sprayed oxide coating of A1$_2$O$_3$, A1$_2$O$_3$-SiO$_2$ on the metal substrate (type C18N10T stainless steel). These effects were characterized by phase identification, Vickers hardness measurement, and tensile test before and after HIPing, These results show that high-pressure treatment has an advantage for improving adhesive strength and Vickers hardness of plasma- sprayed coatings.

  • PDF

Generation and Application of Atmospheric Pressure Glow Plasma in Micro Channel Reactor (마이크로 채널 반응기 내 상압 글로우 플라즈마 생성 및 응용)

  • Lee, Dae-Hoon;Park, Hyoun-Hyang;Lee, Jae-Ok;Lee, Seung-S.;Song, Young-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1869-1873
    • /
    • 2008
  • In this work, to make it possible to generate glow discharge in atmospheric pressure condition with relatively high and wide electric field, micro channel reactor is proposed. Si DRIE and Cr deposition by Ebeam evaporation is used to make channel and bottom electrode layer. Upper electrode is made from ITO glass to visualize discharge within micro channel. Fabricated reactor is verified by generating uniform glow plasma with N2 / He gases each as working fluid. The range of gas electric field to generate glow plasma is from about 200 V/cm and upper limit is not observed in tested condition of up to 150 kV/cm. This data shows that micro channel plasma reactor is more versatile. Indirect estimation of electron temperature in this reactor can be inferred that the electron temperature within glow discharge in micro reactor lies $0{\sim}2eV$. This research demonstrates that the reactor is appropriate in application that needs to maintain low temperature condition during chemical process.

  • PDF

Interactions of Low-Temperature Atmospheric-Pressure Plasmas with Cells, Tissues, and Biomaterials for Orthopaedic Applications

  • Hamaguchi, Satoshi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.20-20
    • /
    • 2011
  • It has been known that, under certain conditions, application of low-temperature atmospheric-pressure plasmas can enhance proliferation of cells. In this study, conditions for optimal cell proliferation were examined for various cells relevant for orthopaedic applications. Plasmas used in our experiments were generated by dielectric barrier discharge (DBD) with a helium flow (of approximately 3 litter/min) into ambient air at atmospheric pressure by a 10 kV~20 kHz power supply. Such plasmas were directly applied to a medium, in which cells of interest were cultured. The cells examined in this study were human synoviocytes, rat mesenchymal stem cells derived from bone marrow or adipose tissue, a mouse osteoblastic cell line (MC3T3-E1), a mouse embryonic mesenchymal cell line (C3H-10T1/2), human osteosarcoma cells (HOS), a mouse myoblast cell line (C2C12), and rat Schwann cells. Since cell proliferation can be enhanced even if the cells are not directly exposed to plasmas but cultured in a medium that is pre-treated by plasma application, it is surmised that long-life free radicals generated in the medium by plasma application stimulate cell proliferation if their densities are appropriate. The level of free radical generation in the medium was examined by dROMs tests and correlation between cell proliferation and oxidative stress was observed. Other applications of plasma medicine in orthopaedics, such as plasma modification of artificial bones and wound healing effects by direct plasma application for mouse models, will be also discussed. The work has been done in collaboration with Prof. H. Yoshikawa and his group members at the School of Medicine, Osaka University.

  • PDF

Abatement of CF4 Using RF Plasma with Annular Shape Electrodes Operating at Low Pressure (환상형상 전극구조를 갖는 저압 RF plasma를 이용한 CF4 제거)

  • Lee, Jae-Ok;Hur, Min;Kim, Kwan-Tae;Lee, Dae-Hoon;Song, Young-Hoon;Lee, Sang-Yun;Noh, Myung-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.690-696
    • /
    • 2010
  • Abatement of perfluorocompounds (PFCs) used in semiconductor and display industries has received an attention due to the increasingly stricter regulation on their emission. In order to meet this circumstance, we have developed a radio frequency (RF) driven plasma reactor with multiple annular shaped electrodes, characterized by an easy installment between a processing chamber and a vacuum pump. Abatement experiment has been performed with respect to $CF_4$, a representative PFCs widely used in the plasma etching process, by varying the power, $CF_4$ and $O_2$ flow rates, $CF_4$ concentration, and pressure. The influence of these variables on the $CF_4$ abatement was analyzed and discussed in terms of the destruction & removal efficiency (DRE), measured with a Fourier transform infrared (FTIR) spectrometer. The results revealed that DRE was enhanced with the increase in the discharge power and pressure, but dropped with the $CF_4$ flow rate and concentration. The addition of small quantity of $O_2$ lead to the improvement of DRE, which, however, leveled off and then decreased with $O_2$ flow rate.

Effect of Applied Pressure on Microstructure and Mechanical Properties for Spark Plasma Sintered Titanium from CP-Ti Powders (CP-Ti 분말로부터 스파크 플라즈마 소결한 타이타늄의 미세구조와 기계적 성질에 미치는 가압력의 영향)

  • Cho, Kyeong-Sik;Song, In-Beom;Kim, Jae;Oh, Myung-Hoon;Hong, Jae-Keun;Park, Nho-Kwang
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.678-685
    • /
    • 2011
  • The aim of this study was to determine the effect of applied pressure and sintering temperature on the microstructure and mechanical properties for spark plasma sintering (SPS) from commercial pure titanium (CP-Ti) powders. Spark plasma sintering is a relatively new sintering technique in powder metallurgy which is capable of sintering metal and ceramic powers quickly to full density at a fairly low temperature due to its unique features. SPS of -200 mesh or -400 mesh CP-Ti powders was carried out in an $Ar+H_2$ mixed gas flowing atmosphere between $650^{\circ}C$ and $750^{\circ}C$ under 10 to 80 MPa pressure. When SPS was carried out at relatively low temperatures ($650^{\circ}C$ to $750^{\circ}C$), the high (>60 MPa) pressure had a marked effect on densification and grain growth suppression. The full density of titanium was achieved at temperatures and pressures above $700^{\circ}C$ and 60 MPa by spark plasma sintering. The crystalline phase and microstructure of titanium sintered up to $700^{\circ}C$ consisted of ${\alpha}$-Ti and equiaxed grains. Vickers hardness ranging from 293 to 362 Hv and strength ranging from 304 to 410 MPa were achieved for spark plasma sintered titanium.

Numerical Modeling of an Inductively Coupled Plasma Based Remote Source for a Low Damage Etch Back System

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.23 no.4
    • /
    • pp.169-178
    • /
    • 2014
  • Fluid model based numerical analysis is done to simulate a low damage etch back system for 20 nm scale semiconductor fabrication. Etch back should be done conformally with very high material selectivity. One possible mechanism is three steps: reactive radical generation, adsorption and thermal desorption. In this study, plasma generation and transport steps are analyzed by a commercial plasma modeling software package, CFD-ACE+. Ar + $CF_4$ ICP was used as a model and the effect of reactive gas inlet position was investigated in 2D and 3D. At 200~300 mTorr of gas pressure, separated gas inlet scheme is analyzed to work well and generated higher density of F and $F_2$ radicals in the lower chamber region while suppressing ions reach to the wafer by a double layer conducting barrier.

Enhancement of Surface Hardness and Corrosion Resistance of AISI 310 Austenitic Stainless Steel by Low Temperature Plasma Carburizing Treatment

  • Lee, Insup
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.272-276
    • /
    • 2017
  • The response of AISI 310 type austenitic stainless steel to the novel low temperature plasma carburizing process has been investigated in this work. This grade of stainless steel shows better corrosion resistance and high temperature oxidation resistance due to its high chromium and nickel content. In this experiment, plasma carburizing was performed on AISI 310 stainless steel in a D.C. pulsed plasma ion nitriding system at different temperatures in $H_2-Ar-CH_4$ gas mixtures. The working pressure was 4 Torr (533Pa approx.) and the applied voltage was 600 V during the plasma carburizing treatment. The hardness of the samples was measured by using a Vickers micro hardness tester with the load of 100 g. The phase of carburized layer formed on the surface was confirmed by X-ray diffraction. The resultant carburized layer was found to be precipitation free and resulted in significantly improved hardness and corrosion resistance.

Removal of Volatile Organic Compounds Using a Plasma Assisted Biotrickling System (플라즈마를 결합한 바이오 트리클링 시스템에 의한 휘발성 유기물질의 제거)

  • Kim, Hak-Joon;Han, Bang-Woo;Kim, Yong-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.727-733
    • /
    • 2007
  • In this study, a newly developed biotrickling system, combined with a non-thermal plasma reactor, was investigated to effectively treat gaseous contaminants such as VOCs (Volatile Organic Compounds). Three kinds of non-thermal plasmas (NTPs) such as a rod type dielectric barrier discharge (DBD) plasma, a packed bead type DBD plasma and a gliding arc (GA) plasma, were tested and compared in terms of power consumption. The rod type DBD plasma was selected as one for integration with biotrickling system due to its relatively high VOC removal efficiency, low power consumption and low pressure drop. Toluene and xylene as representatives of VOCs were used as test gases. The experiment results showed that the efficiency of biotrickling system was especially very low at the high gas concentration and high flow rate and the removal efficiencies of VOCs were considerably enhanced in the biotrickling system, when the DBD plasma was worked in front of that even at the high gas concentration and high flow rate.