• 제목/요약/키워드: Low pressure EGR

검색결과 49건 처리시간 0.019초

4실린더 커먼레일 디젤엔진에서 바이오디젤 혼합연료와 EGR율에 따른 연소 및 배기특성 (Combustion and Emission Characteristics of Biodiesel Blended Fuel by EGR Rate in a 4-cylinder CRDI Diesel Engine)

  • 정규수;이동곤;연인모;노현구;박성욱;이창식
    • 한국자동차공학회논문집
    • /
    • 제19권4호
    • /
    • pp.130-136
    • /
    • 2011
  • This study describes the effect of EGR rate on the combustion and emissions characteristics of a four cylinder CRDI diesel engine using biodiesel (soybean oil) blended diesel fuel. The test fuel is composed of 30% biodiesel and 70% ULSD (ultra low sulfur diesel) by volumetric ratio. The experiment of engine emissions and performance characteristics were performed under the various EGR rates. The experimental results showed that ignition delay was extended, the maximum combustion pressure and heat release gradually were decreased with increasing EGR rate. Comparing biodiesel blended fuel to ULSD, the injection quantity of biodiesel blended fuel was further increased than ULSD. The emission results showed that $NO_x$ emission of biodiesel blended fuel becomes higher according to the increase of EGR rate. However, in the case of biodiesel blended fuel, HC, CO and soot emissions were decreased compared to ULSD.

건설기계용 저온연소 엔진시스템 개발 (Development of Low Temperature Diesel Combustion Engine for Construction Equipments)

  • 심의준;김득상;이동인;박용희
    • 한국자동차공학회논문집
    • /
    • 제22권6호
    • /
    • pp.83-88
    • /
    • 2014
  • LTC(Low Temperature Combustion) technology has been studied to see feasibility of the combustion technology applied to heavy-duty engines on the laboratory scale. This study succeeded to develop a demo engine including realized low temperature combustion under partial load conditions. To find the best feasible LTC strategy, various LTC combustion methods such as PPCI, MK and highly diluted mixing controlled LTC were conducted on 6.0L heavy duty diesel engine. Air management system was re-designed to make these combustion scheme stable and the re-designed air system helped expand LTC operating range. This study finally revealed plausible LTC concept to maximize benefit of the alternative combustion technology while overcoming handicaps of the LTC strategy.

저온연소조건에서 급속압축기를 이용한 n-heptane/n-butanol 혼합연료의 착화지연에 관한 연구 (The investigation on the Ignition Delay of n-heptane/n-butanol Blend Fuel Using a Rapid Compression Machine at Low Temperature Combustion Regime)

  • 송재혁;강기중;;;최경민;김덕줄
    • 한국연소학회지
    • /
    • 제18권2호
    • /
    • pp.32-41
    • /
    • 2013
  • This study presents both experimental and numerical investigation of ignition delay time of n-heptane and n-butanol binary fuel. The $O_2$ concentration in the mixture was set to 9-10% to make high exhaust gas recirculation( EGR) rate condition which leads low NOx and soot emission. Experiments were performed using a rapid compression machine(RCM) at compressed pressure 20bar, several compressed temperature and three equivalence ratios(0.4, 1.0, 1.5). In addition, a numerical study on the ignition delay time was performed using CHEMKIN codes to validate experimental results and predict chemical species in the combustion process. The results showed that the ignition delay time increased with increasing the n-butanol fraction due to a decrease of oxidation of n-heptane at the low temperature. Moreover, all of the binary fuel mixtures showed the combustion characteristics of n-heptane such as cool flame mode at low temperature and negative-temperature-coefficient(NTC) behavior. Due to the effect of high EGR rate condition, the operating region is reduced at lean condition and the ignition delay time sharply increased compared with no EGR condition.

흡기밸브 닫힘 시기와 분사조건이 PCCI 엔진의 성능에 미치는 영향에 관한 연구 (A Study on Effect of the Intake Valve Timing and Injection Conditions on the PCCI Engine Performance)

  • 이재현;김형민;김영진;이기형
    • 한국분무공학회지
    • /
    • 제15권1호
    • /
    • pp.1-7
    • /
    • 2010
  • As world attention has focused on global warming and air pollution, high efficiency diesel engines with low $CO_2$ emissions have become more attractive. Premixed diesel engines in particular have the potential to achieve the more homogeneous mixture in the cylinder which results in lower NOx and soot emission. Early studies have shown that the operation conditions such as the EGR, intake conditions, injection conditions and compression ratio are important to reduce emissions in a PCCI (Premixed Charge Compression Ignition) engine. In this study a modified cam was employed to reduce the effective compression ratio. While opening timing of the intake valve was fixed, closing timing of the intake valve was retarded $30^{\circ}$. Although Atkinson cycle with the retarded cam leads to a low in-cylinder pressure in the compression stroke, the engine work can still be increased by advanced injection timing. On that account, we investigated the effects of various injection parameters to reduce emission and fuel consumption; as a result, lower NOx emission levels and almost same levels of fuel consumption and PM compared with those of conventional diesel engine cam timing could be achieved with the LIVC system.

비도로 차량용 디젤엔진의 배기가스 저감에 관한 연구 (A Study of the Reduction of Diesel-Engine Emissions for Off-Road Vehicles)

  • 조규백;김홍석;강정호
    • 대한기계학회논문집B
    • /
    • 제35권6호
    • /
    • pp.577-583
    • /
    • 2011
  • 비도로 차량용 디젤엔진의 Tier 4 interim 규제를 만족하기 위하여 입자상물질과 질소산화물 배출량은 현행 규제 대비 각각 95%, 30% 저감되어야 하며, 입자상 물질을 저감하기위한 방법으로 디젤산화촉매, 부분유량 매연 여과장치 및 매연여과장치가 비도로 차량용 디젤엔진에 적용될 수 있다. 또한 질소산화물을 저감하기위해 배기가스 재순환방법, 선택적 환원촉매와 희박 질소산화물 포집장치 등이 적용될 수 있다. 본 연구에서는 56kW급 off-road 차량에서의 입자상물질과 질소산화물을 저감하기위해 매연여과장치와 고압루프 배기가스재순환 시스템이 연구되었다. 실험결과로서 디젤산화촉매와 매연여과장치는 입자상물질을 저감하는데 매우 효과적이었으며 낮은 배압과 함께 출력손실도 5%이내였다. 고압루프 배기가스재순환을 적용한 결과 중 저부하 조건에서 효과적으로 질소산화물을 저감하였으며 배기가스재순환율이 높을수록 질소산화물의 저감율도 증가하였다.

파일럿 분사가 저온 디젤 연소에 미치는 영향 (Effects of Pilot Injection on Low Temperature Diesel Combustion)

  • 한상욱;배충식
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.141-147
    • /
    • 2012
  • A direct injection diesel engine with large amount of exhaust gas recirculation was used to investigate low temperature diesel combustion. Pilot injection strategy was adopted in low temperature diesel combustion to reduce high carbon monoxide and hydrocarbon emissions. Combustion characteristics and exhaust emissions of low temperature diesel combustion under different pilot injection timings, pilot injection quantities and injection pressures were analyzed. Retarding pilot injection timing, increasing pilot injection quantity and higher injection pressure advanced main combustion timing and increased peak heat release rate of main combustion. As a result of these strategies, carbon monoxide and hydrocarbon emissions were reduced. Soot emission was slightly increased with retarded pilot injection timing while the effect of pilot injection on nitrogen oxides emission was negligible under low combustion temperature condition. Spatial distribution of fuel from the spray targeting visualization was also investigated to provide more insight into the reason for the reduction in carbon monoxide and hydrocarbon emissions.

분사기 형상 변경을 통한 저온 디젤 연소의 배기 배출물 저감 (Reduction of Exhaust Emissions Using Various Injector Configurations in Low Temperature Diesel Combustion)

  • 정용진;장진영;박정서;배충식;김득상
    • 한국자동차공학회논문집
    • /
    • 제19권4호
    • /
    • pp.16-23
    • /
    • 2011
  • Low temperature combustion is one of the advanced combustion technology in an internal combustion engine to reduce soot and nitrogen oxides simultaneously. In present experiment three kinds of injector were used to investigate the influence of injection angle and number of nozzle holes on the low temperature combustion in a heavy duty diesel engine. Low temperature diesel combustion is realized from the exhaust gas recirculation rate of 60%. Indicated mean effective pressure of low temperature combustion corresponds to the 70% level of conventional diesel engine combustion. Reduction of hydrocarbon and carbon monoxide, which are produced in low temperature combustion because of the low combustion temperature and a deficit of oxygen, was achieved by using various injector configuration. The result of experiment with $100^{\circ}$ injection angle and 8 holes showed that reductions in hydrocarbon and carbon monoxide could be achieved 58% and 27% respectively maintaining the 7% increased indicated mean effective pressure in low temperature diesel combustion compared with conventional injector.

DME를 착화촉진제로 사용한 가솔린 예혼합 압축 착화 엔진의 연소 특성 (Combustion Characteristics of Gasoline HCCI Engine with DME as an Ignition Promoter)

  • 염기태;장진영;배충식
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.178-185
    • /
    • 2006
  • This paper investigates the steady-state combustion characteristics of the Homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out its benefits in exhaust gas emissions. HCCI combustion is an attractive way to lower carbon dioxide($CO_2$), nitrogen oxides(NOx) emission and to allow higher fuel conversion efficiency. However, HCCI engine has inherent problem of narrow operating range at high load due to high in-cylinder peak pressure and consequent noise. To overcome this problem, the control of combustion start and heat release rate is required. It is difficult to control the start of combustion because HCCI combustion phase is closely linked to chemical reaction during a compression stroke. The combination of VVT and DME direct injection was chosen as the most promising strategy to control the HCCI combustion phase in this study. Regular gasoline was injected at intake port as main fuel, while small amount of DME was also injected directly into the cylinder as an ignition promoter for the control of ignition timing. Different intake valve timings were tested for combustion phase control. Regular gasoline was tested for HCCI operation and emission characteristics with various engine conditions. With HCCI operation, ignition delay and rapid burning angle were successfully controlled by the amount of internal EGR that was determined with VVT. For best IMEP and low HC emission, DME should be injected during early compression stroke. IMEP was mainly affected by the DME injection timing, and quantities of fuel DME and gasoline. HC emission was mainly affected by both the amount of gasoline and the DME injection timing. NOx emission was lower than conventional SI engine at gasoline lean region. However, NOx emission was similar to that in the conventional SI engine at gasoline rich region. CO emission was affected by the amount of gasoline and DME.

CRDI 디젤엔진의 연료분사기기가 연소특성에 미치는 영향 (Effects of the Fuel Injection Timing on the Combustion Characteristics in CRDI Diesel Engine)

  • 김주신;김경현;이한성;임상우;강희영;고대권
    • 동력기계공학회지
    • /
    • 제15권5호
    • /
    • pp.10-15
    • /
    • 2011
  • This paper describes the engine performance and combustion characteristics of a CRDI diesel engine, operated by electronically controlled diesel fuel injector with variable injection timing. This experiment focused on fuel injection timing and pressure about combustion characteristics of CRDI diesel engine. EGR was excepted because it would be furtherly analyzed with additional experiments. The experiment was conducted under the circumstance of engine torque for 4, 8, 12 and 16 kgf-m and fuel injection timing for $15^{\circ}$, $10^{\circ}$ and $5^{\circ}$ BTDC, at the engine speed of 1100, 1400, 1700 and 2000 rpm. Fuel injection was controlled to retard or advance initiation of the injection event by electronically controlled fuel injection unit injector on the personal computer. When fuel was injected into the cylinders of a CRDI diesel engine it would go through ignition delay before starting of combustion. Therefore, fuel injection timing of CRDI diesel engine had a significant effect upon performance and combustion characteristics. Depending on the injection timing the fuel consumption rate following the rotational speed and torque was 3~78 g/psh (1.7~30.6%). The range of fuel injection timing that resulted in low fuel consumption overall was BTDC 15-10 degrees.