• Title/Summary/Keyword: Low power laser

Search Result 369, Processing Time 0.034 seconds

Fiber Laser Welding in the Car Body Shop - Laser Seam Stepper versus Remote Laser Welding -

  • Kessler, Berthold
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.17-22
    • /
    • 2013
  • The excellent beam quality of high power fiber lasers are commonly used for remote welding applications in body job applications. The Welding speed and productivity is unmatched with any other welding technology including resistance spot welding or traditional laser welding. High tooling cost for clamping and bulky safety enclosures are obstacles which are limiting the use. With the newly developed Laser stitch welding gun we have an integrated clamping in the process tool and the laser welding is shielded in a way that no external enclosure is needed. Operation of this laser welding gun is comparable with resistance spot welding but 2-times faster. Laser stitch welding is faster than spot welding and slower than remote welding. It is a laser welding tool with all the laser benefits like welding of short flanges, weld ability of Ultra High Strength steel, 3 layers welding and Aluminium welding. Together with low energy consumption and minimum operation cost of IPG fiber laser it is a new and sharp tool for economic car body assembly.

The Gyro High Voltage Power Supply Design for Attitude Control in the Satellite (저궤도 위성 자세제어용 자이로 고전압 발생기 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.403-408
    • /
    • 2008
  • The gyroscope is the sensor for detecting the rotation in inertial reference frame and constitute the navigation system together an accelerometer. As the inertial reference equipment for attitude determination and control in the satellite, the mechanical gyroscope has been used but it bring the disturbance for mass unbalance so the disturbance give a bad influence to the observation satellite mission because the mechanical gyroscope has the rotation parts. During the launch. The mechanical gyroscope is weak in vibration, shock and has the defect of narrow operating temperature range so it need the special design in integration. Recently the low orbit observation satellite for seeking the high pointing accuracy of image camera payload accept the FOG(Fiber Optic Gyro) or RLG(Ring Laser Gyro) for the attitude determination and control. The Ring Laser Gyro makes use of the Sanac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. It need the 1000V DC to create the He-Ne plasma in discharge tube. In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply (HVPS) is proposed. Also, The analysis of flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design and voltage doubler circuit.

A Study on a Laser Scanning Vibrometer Using a Magnetostrictive Resonant Device (자기 변형 공진 기구를 이용한 레이저 스캐닝 진동측정기에 관한 연구)

  • 이정화;류제길;박기환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.58-66
    • /
    • 1998
  • A low power consuming laser scanning vibrometer is studied for its development. For its optical system, a laser interferometer is constructed to use the Doppler effect. In order to reduce the driving power of the scanning system, a small displacement of the scanning system is produced, which is achieved by using a magnetostrictive actuator. A sufficient rotating angle of the scanning system is obtained by using an amplified displacement from the resonant phenomena of a second order mechanical system composed of a mass and spring. The control of the magnetostrictive actuator using a Terfenol-D is performed without using a feedback system to help reduce the power consumption. The vibration analysis is made for the sinusoidal scanning input to have the space domain information from the time domain of the velocity of a vibration object. As a partial work of development of a tow power consuming laser scanning vibrometer, in this work, a scanning system which has the above features is developed and experimentally investigated. For the purpose of the optical system calibration, the vibration measurement for one axis is presented and the future works are discussed.

  • PDF

The Therapeutic Effects of a Pulsed Nd:YAG Laser on Oral Lesions (구강병소에 대한 펄스형 Nd: YAG 레이저의 치료효과)

  • 신금백
    • Journal of Oral Medicine and Pain
    • /
    • v.22 no.2
    • /
    • pp.309-325
    • /
    • 1997
  • In order to set the lasing variables and evaluate, clinically, the therapeutic effects of a pulsed Nd:YAG laser on oral lesion, the author applied the laser energy from a fiberoptic delivered, free running, pulsed Nd:YAG laser (wavelength 1064nm, Pulse duration 120$\mu$sec, fiber diameter 200$\mu$m/320$\mu$m) to 22 cases of oral soft tissue lesions and 6 cases of oral hard tissue lesions. The obtained results were as follows : 1. The effective excision with contact mode and the effective hemostasis of accompanied bleeding with noncontact mode were occurred by lasing on oral soft tissue lesions with fiber diameter of 320$\mu$m under the variables of 2.0~4.0W and 20~50Hz which were controlled into high power/low pulses for excision, low power/high pulses for hemostasis, low power in granulation tissue and high power in fibrous tissue according to therapeutic goals and tissue conditions. 2. About 50% of decreasing effect on hypersensitivity was occurred by lasing with non-contact and contact mode on cervical abrasion which caused dentinal hypersensitivity with fiber diameter of 320$\mu$m under the variables of 0.7 - 1.0W and 10Hz which were applied 2~3 times with 1 week interval. 3. The effective sterilization of infected root canal and lesion of periapical abscess was occurred by lasing with contact and spiral modes on wall of root canal and periapical abscess with fiber diameter of 200$\mu$m of which the tip was placed about 1mm shorter than root canal length under the variables of 1.OW and 10Hz.

  • PDF

A study on Driver module for a high-power pulsed laser diode (고출력 펄스 반도체 레이저의 드라이버 모듈에 관한 연구)

  • Jung, In-Suk;Kim, Ho-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1078-1080
    • /
    • 1999
  • A laser pulse generator which consists of charging resistor, energy storage capacitor laser diode, and switching elements was designed in order to generate 15ns, 20W laser pulses. And the effects of performances of SCR and FET as switching elements are compared. When SCR is used, the SCR's low maximum voltage makes the circuit so complicated, and when FET is used, the FET needs the special sate driver which improves the FET's operation.

  • PDF

Laser Weldability and Formability of Hot Rolled Steels for Hydroforming Applications (하이드로포밍용 열연 강재의 레이저 용접성 및 성형 특성)

  • Lee Won-Beam;Lee Jong-Bong
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.19-24
    • /
    • 2004
  • The laser welding and its analysis of thin-sheet carbon steels were carried out with high power $CO_{2}$ laser. The main factor of weld quality of laser welding is gap and edge quality. This work was preformed to focus on the gap tolerance problem during laser welding. First, bead on plate welding of thin sheet was examined to investigate the effect of laser welding variables, and to obtain optimum welding condition. Butt welding was also carried out to show the effect of gap on the laser weldability of thin sheet. In order to investigate the effect of gap on formability of welded thin sheet, LDH test was caried out. At high welding speed, the partial penetration was obtained by low heat input. Otherwise, porosity was formed in the bead at low weld speed because of too much heat input. The optimum welding condition of welding was derived from bead width, penetration and hardness property. The maximum gap tolerance on laser welding was observed to be about 0.2mm. This gap size has good relationship with beam size of laser spot(about 0.3mm). The formability of welded sheet was about $80{\%}$ value of base metal and the gap size has not affected on the formability, although weld quality is dependent on the gap size.

Strain relaxed Co nanocrystals formation from thin films on sapphire substrate induced by nano-second laser irradiation

  • Seo, Ok-Gyun;Gang, Deok-Ho;Son, Jun-Gon;Choe, Jeong-Won;Ha, Seong-Su;Kim, Seon-Min;Gang, Hyeon-Cheol;No, Do-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.145.2-145.2
    • /
    • 2016
  • We report the phase transformation of Co thin films on a sapphire substrate induced by laser irradiation. As grown Co films were initially strained and tetragonally distorted. With low power laser irradiation, the surface was ruptured and irregular holes were formed. As the laser power was increased, the films changed into round shape Co nanocrystals with well-defined 6-fold structure. By measuring the XRD of Co nanostructure as a function of laser energy densities, we found that the change of morphological shapes from films to nanocrystals was accompanied with decrease of the tetragonal distortion as well as strain relaxation. By measuring the size distribution of nanocrystals as a function of film thickness, the average diameter is proportional to 1.7 power of the film thickness which was consistent with the prediction of thin film hydrodynamic (TFT) dwetting theory. Finally, we fabricated the formation of size controlling nanocrystals on the sapphire substrate without strain.

  • PDF

A Scheme to Control Laser Power and Exposure Time for Fabricating Precise Threedimensional Microstructures in Nano-stereolithography (nSL) Process (3 차원 나노 스테레오리소그래피의 정밀화를 위한 펨토초 레이저 출력-조사시간 제어방법)

  • 박상후;임태우;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1365-1368
    • /
    • 2004
  • A scheme to control the laser power and the exposure time was studied to fabricate precise microstructures using the nanostereolithography (nSL) process. Some recent works have shown that a three-dimensional (3D) microstructure can be fabricated by the photopolymerizing process which is induced by two-photon absorption (TPA) with a femtosecond pulse laser. TPA provides the ability to confine photochemical and physical reactions within the order of laser wavelength, so neardiffraction limit features can be produced. In the nSL process, voxels are continuously generated to form a layer and then another layer is stacked in the normal direction of a plane to construct a 3D structure. Thus, fabrication of a voxel with low aspect ratio and small diameter is one of the most important parameters for fabricating precise 3D microstructures. In this work, the mechanism of a voxel formation is studied and a scheme on the control of laser power and exposure for minimizing aspect ratio of a voxel is proposed.

  • PDF

Effects of resolution of inflammation for low-power $CO_2$ laser treatment on gingivitis patients (치은염 환자에서 저출력 이산화탄소 레이저의 염증완화 효과에 관한 연구)

  • Song, Hyun-Jong;Kim, Byung-Ock;Jang, Hyun-Seon
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.4
    • /
    • pp.657-668
    • /
    • 2008
  • Purpose: In this study, we compared low-power $CO_2$ laser treatment to ultrasonic scaling, which is generally approved as a power-driven mechanical instrumentation, and evaluated both of these treatments regarding their clinical effectiveness and change in the volume of in GCF. Material and methods: 20 patients who had gingivitis were selected. all of patients has no systemic problems. Randomly selected, one quadrant received ultrasonic scaling only, another quadrant received ultrasonic scaling and $CO_2$ laser irradiation, the other quadrant received $CO_2$ laser irradiation only. Clinical parameters measured at baseline, 1 weeks, 2weeks, 4weeks and 8weeks. Result: Pocket probing depth and clinical attachment level were not changed during study period. Gingival index of all group were improved after treatment. At 1 weeks after treatment, Gingival index of ultrasonic scaling group was only significantly different compared to control group. At 2 weeks after treatment, gingival index of all experimental group were significantly different compared to control group. At 4 and 8 weeks after treatment, gingival index of all group were increased, but experimental group were lower than control group. Sulcus bleeding index was similar to the results of gingival index. At 1 weeks after treatment, all experimental group were significantly different compared to control group and it maintained during study. At 2 weeks after treatment, sulcus bleeding index of all group were lowest during study. Gingival crevicular fluid were measured with $Periotron^{(R)}$ 8000($Oraflow^{(R)}$, Inc. USA). At baseline, all group were showed moderately severe condition. At 1 week after treatment, laser treatment only group was reduced quantity of gingival crevicular fluid mostly, and all group were reduced quantity of gingival crevicular fluid. At 2 weeks after treatment, all group were health state. At 4 and 8 weeks after treatment, all group were showed recurrent of inflammation, and control group was the most significantly increased. Conclusion: This study showed that the effects of $CO_2$ laser treatment were similar to conventional ultrasonic scaling and this result remained longer than plaque control only. These results suggest possibility of $CO_2$ laser treatment for altered periodontal therapy.

Ground Base Laser Torque Applied on LEO Satellites of Various Geometries

  • Khalifa, N.S.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.484-490
    • /
    • 2012
  • This paper is devoted to investigate the feasibility of using a medium power ground-based laser to produce a torque on LEO satellites of various shapes. The laser intensity delivered to a satellite is calculated using a simple model of laser propagation in which a standard atmospheric condition and linear atmospheric interaction mechanism is assumed. The laser force is formulated using a geocentric equatorial system in which the Earth is an oblate spheroid. The torque is formulated for a cylindrical satellite, spherical satellites and for satellites of complex shape. The torque algorithm is implemented for some sun synchronous low Earth orbit cubesats. Based on satellites perigee height, the results demonstrate that laser torque affecting on a cubesat has a maximum value in the order of $10^{-9}$ which is comparable with that of solar radiation. However, it has a minimum value in the order of $10^{-10}$ which is comparable with that of gravity gradient. Moreover, the results clarify the dependency of the laser torque on the orbital eccentricity. As the orbit becomes more circular it will experience less torque. So, we can conclude that the ground based laser torque has a significant contribution on the low Earth orbit cubesats. It can be adjusted to obtain the required control torque and it can be used as an active attitude control system for cubesats.