• Title/Summary/Keyword: Low magnetic field

Search Result 792, Processing Time 0.026 seconds

Analytical Calculation of Air Gap Magnetic Field Distribution in Magnetic Geared Motors

  • Shi, Hyoseok;Niguchi, Noboru;Hirata, Katsuhiro
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.794-802
    • /
    • 2019
  • Magnetic geared motors are driven using the same operating principle as conventional synchronous motors in which a magnetic gear is embedded. The magnetic geared motor is structurally similar to a magnetic gear. However, by applying currents to the stator coil, the high-speed rotor is rotated by a magnetic field and the low-speed rotor is rotated according to the gear ratio. In this paper, the operational principle of a magnetic geared motor and the magnetic flux density in its inner and outer air gaps are described. Then the magnetic flux density in the two air gaps is used to express a method for calculating the electrical and mechanical output. Results obtained with the analytical calculation method are compared with those of the finite element analysis. Finally, a prototype is used to verify the results of the analytical calculation and FEA.

Development and Construction of low Magnetic Field Control System for Analysis of Magnetic Field Effect in the Deflection Yoke (브라운관의 자기장 영향 분석용 저자기장 제어 장치의 설계 및 제작)

  • Park, Po-Gyu;Kim, Young-Gyun;Shin, Suk-Woo;Choi, Hyung-Ho;Kim, Tae-Ik;Jung, Dong-Keun
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.6
    • /
    • pp.251-256
    • /
    • 2003
  • We have developed the quality analysis system for magnetic field effect of cathode-ray tube that is used a monitor, TV and medical appliance. We designed and constructed the large 3-axis square coil (2 m length) system for the generation of 3-component magnetic field using power supply, magnetometer and computer below 0.2 mT range. The coil constant is 30.31 ${\mu}$T, 29.73 ${\mu}$T and 30.51 ${\mu}$T for the X, Y and Z axis square coil respectively. The magnetic field resolution was 0.01 T. The uniformity of magnetic field was measured within 1 % in the range of 12 cm.

A New Method to Estimate the Magnetic Field Modulation Effect of Brushless Doubly-Fed Machine with Cage Rotor

  • Liu, Hanghang;Han, Li;Gao, Qiang
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.330-335
    • /
    • 2012
  • Brushless doubly-fed machine (BDFM) doesn't use brush and slip ring, and has advantages such as high system reliability, small capacity of its frequency converter, low system cost, adjustable power factor and speed, etc. At the same time, it has good applicable potentials on the variable frequency motors and the variable speed constant frequency generators. However, due to the complicacy and particularity of BDFM in the structure and operating mechanism, the effect of magnetic field modulation directly influences the operating efficiency of BDFM. To study the effect of different cage rotor structures on the magnetic field modulation of BDFM, the rotor magnetomotive force (MMF) of BDFM with cage rotor is studied by the analytical method. The components and features of rotor harmonic MMFs are discussed. At the same time, the method to weaken the higher harmonics is analyzed by the theoretic formulae. Furthermore, the magnetic field modulation mechanism is expounded on in detail and the relationship between the magnetic field modulation effect and the operating efficiency of BDFM is established. And then, a new method for estimating the magnetic field modulation effect is proposed. At last, the magnetic field modulation effects of four BDFM prototypes with different cage rotor structures are compared by the MMF analysis and the efficiency data of electromagnetic design. The results verify the effectiveness of the new method for estimating the magnetic field modulation effect of BDFM with cage rotor.

Impact of 0.35 T Magnetic Field on Dose Calculation for Non-small Cell Lung Cancer Stereotactic Radiotherapy Plans

  • Jaeman Son;Sung Young Lee;Chang Heon Choi;Jong Min Park;Jung-in Kim
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.3
    • /
    • pp.117-123
    • /
    • 2023
  • Background: We investigated the impact of 0.35 T magnetic field on dose calculation for non-small cell lung cancer (NSCLC) stereotactic ablative radiotherapy (SABR) in the ViewRay system (ViewRay Inc.), which features a simultaneous use of magnetic resonance imaging (MRI) to guide radiotherapy for an improved targeting of tumors. Materials and Methods: Here, we present a comprehensive analysis of the effects induced by the 0.35 T magnetic field on various characteristics of SABR plans including the plan qualities and dose calculation for the planning target volume, organs at risk, and outer/inner shells. Therefore, two SABR plans were set up, one with a 0.35 T magnetic field applied during radiotherapy and another in the absence of the field. The dosimetric parameters were calculated in both cases, and the plan quality indices were evaluated using a Monte Carlo algorithm based on a treatment planning system. Results and Discussion: Our findings showed no significant impact on dose calculation under the 0.35 T magnetic field for all analyzed parameters. Nonetheless, a significant enhancement in the dose was calculated on the skin surrounding the tumor when the 0.35 T magnetic field was applied during the radiotherapy. This was attributed to the electron return effect, which results from the deviation of the electrons ejected from tissues upon radiation due to Lorentz forces. These returned electrons re-enter the tissues, causing a local dose increase in the calculated dose. Conclusion: The present study highlights the impact of the 0.35 T magnetic field used for MRI in the ViewRay system for NSCLC SABR treatment, especially on the skin surrounding the tumors.

A study on the characteristics of axially magnetized capacitively coupled radio frequency plasma (축 방향으로 자화된 용량 결합형 RF 플라즈마의 특성 연구)

  • 이호준;태흥식;이정해;신경섭;황기웅
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.112-118
    • /
    • 2001
  • Magnetic field is commonly used in low temperature processing plasmas to enhance the performance of the plasma reactors. E$\times$B magnetron or surface multipole configuration is the most popular. However, the properties of capacitively coupled rf plasma confined by axial static magnetic field have rarely been studied. With these background, the effect of magnetic field on the characteristics of capacitively coupled 13.56 MHz/40 KHz argon plasma was studied, Ion saturation current, electron temperature and plasma potential were measured by Langmuir probe and emissive probe. At low pressure region (~10 mTorr), ion current increases by a factor of 3-4 due to reduction of diffusion loss of charged particles to the wall. Electron temperature slightly increases with magnetic field for 13.56 MHz discharge. However, for 40 KHz discharge, electron temperature decreased from 1.8 eV to 0.8 eV with magnetic field. It was observed that the magnetic field induces large temporal variation of the plasma potential. Particle in cell simulation was performed to examine the behaviors of the space potential. Experimental and simulation results agreed qualitatively.

  • PDF

Development of Prepolarization Coil Current Driver in SQUID Sensor-based Ultra Low-field Magnetic Resonance Apparatuses (SQUID 센서 기반의 극저자장 자기공명 장치를 위한 사전자화코일 전류구동장치 개발)

  • Hwang, S.M.;Kim, K.;Kang, C.S.;Lee, S.J.;Lee, Y.H.
    • Progress in Superconductivity
    • /
    • v.13 no.2
    • /
    • pp.105-110
    • /
    • 2011
  • SQUID sensor-based ultra low-field magnetic resonance apparatus with ${\mu}T$-level measurement field requires a strong prepolarization magnetic field ($B_p$) to magnetize its sample and obtain magnetic resonance signal with a high signal-to-noise ratio. This $B_p$ needs to be ramped down very quickly so that it does not interfere with signal acquisition which must take place before the sample magnetization relaxes off. A MOSFET switch-based $B_p$ coil driver has current ramp-down time ($t_{rd}$) that increases with $B_p$ current, which makes it unsuitable for driving high-field $B_p$ coil made of superconducting material. An energy cycling-type current driver has been developed for such a coil. This driver contains a storage capacitor inside a switch in IGBT-diode bridge configuration, which can manipulate how the capacitor is connected between the $B_p$ coil and its current source. The implemented circuit with 1.2 kV-tolerant devices was capable of driving 32 A current into a thick copper-wire solenoid $B_p$ coil with a 182 mm inner diameter, 0.23 H inductance, and 5.4 mT/A magnetic field-to-current ratio. The measured trd was 7.6 ms with a 160 ${\mu}F$ storage capacitor. trd was dependent only on the inductance of the coil and the capacitance of the driver capacitor. This driver is scalable to significantly higher current of superconducting $B_p$ coils without the $t_{rd}$ becoming unacceptably long with higher $B_p$ current.

Magnetic Field Properties About Core Change (코어 변화에 대한 자계 특성)

  • Kim, Ki-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.159-164
    • /
    • 2012
  • In this paper, it tried to develop the core sensor for detection of micro magnetic field in electric wires. The sensor is non contact type and is consisted of ferrite core for low price. To investigate their properties for variations of current, it changed the number of winding and the length of sample core, it examined, to check the live wire situation in built-in wires, electrical characteristics due to difference between electric wires and core sensor. As the results, it verified live wire situation at the number of winding(5,000) and within length of 6[cm]. Also, it obtained magnetic field magnitude decreased inverse proportion ratio to a square about difference between electric wires and core sensor.

A Numerical Analysis of Molten Steel Flow Under Applied Magnetic Fields in Continuous Casting

  • Yoon, Teuk-Myo;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2010-2018
    • /
    • 2003
  • Although continuous casting process has highly developed, there still remain many problems to be considered. Specifically, two vortex flows resulting from impingement against narrow walls make a flow field unstable in a mold, and it is directly related to internal and external defects of steel products. To cope with this instability, EMBR (Electromagnetic Brake Ruler) technique has been lately studied for the stability of molten steel flow, and it is revealed that molten steel flow in a mold can be controlled with applied magnetic field. However, it is still difficult to clarify flow pattern in an EMBR caster due to complex correlations among variables such as geometric factors, casting conditions, and the place and the intensity of charged magnetic field. In the present study, flow field in a mold is focused with different conditions of electromagnetic effect. To accurately analyze the case, three dimensional low Reynolds turbulent model and appropriate boundary conditions are chosen. To evaluate the electromagnetic effect in molten steel flow, dimensionless numbers are employed. The results show that the location and the intensity of the applied magnetic field significantly influence the flow pattern. Both impingement and internal flow pattern are changed remarkably with the change of the location of applied magnetic field. It turns out that an insufficient magnetic force yields adverse effect like channeling, and rather lowers the quality of steel product.

A Study on the Optimal Magnet for ECR (ECR 용 최적 마그네트에 관한 연구)

  • Kim, Y.T.;Kim, Y.J.;Kim, K.S.;Lee, Y.J.;Son, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.649-652
    • /
    • 1992
  • ECR(Electron Cyclotron Resonance) occure at ${\omega}_c$=${\omega}$, ${\omega}_c$:electron cycltron frequency, ${\omega}$:electromagnetic wave frequency. ECR system have several merit, 1) power transefer efficiency 2) low neutral gas pressure (below 1 mTorr) 3) high plasma density($10^{12}$ $cm^{-3}$). It is applicated variously in the field of semiconductor and new materials as the manufacturing equipment. Magnetic field in ECR system contruct resonance layer (${\omega}$=2.45GHz, $B_z$=875 Gauss) and control plasma. Plasma is almost generated at resonance layer. If the distance between substrate and resonance layer is short, uniformity of plasma is related with profile of resonance layer. Plasma have the property "Cold in Field", so directonality of magnetic field is one of the control factors of anisotropic etching. In this study, we calculate B field and flux line distribution, optimize geometry and submagnet current and improve of magnetic field directionality (99.9%) near substrate. For the purpose of calculation, vector potential A(r,z) and magnetic field B(r,z), green function and numerical integration is used. Object function for submagnet optimization is magnetic field directionality on the substrate and Powell method is used as optimization skim.

  • PDF

Developing Wearable Joystick Device Using Magnetic Sensor (자기장 센서를 이용한 웨어러블 조이스틱 장치의 개발)

  • Yeo, Hee-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.18-23
    • /
    • 2021
  • There has been demand for many magnetic sensor applications, and to develop low-cost devices, it is critical to accurately understand the behavior of the magnetic field and the characteristics of magnetic sensors and target devices during initial development phase. The magnetic field has been known to have very complicated nonlinear data to calculate, so it has required expensive computing machines or research to accurately calculate the magnetic sensor values. However, this paper introduces a characteristic of a magnetic sensor called the giant magnetoresistance (GMR) and proposes simple and sufficient approaches to develop a wearable joystick device using a magnetic sensor. Particularly, this paper introduces the design factors for how to properly develop a low-cost wearable joystick device using magnetic sensors after carefully considering the mechanism of a real joystick and the characteristics of magnetic sensors. As a result, user test results are provided to show how users can operate this new wearable joystick device.