• Title/Summary/Keyword: Low level waste

Search Result 422, Processing Time 0.03 seconds

Volume Reduction of Radioactive Liquid Waste by Pervaporation Method (투과증발법에 의한 방사성폐액의 감용)

  • Kang, Young-Ho;Kwon, Seon-Gil;Yang, Yeong-Seok;Hwang, Sung-Tai;Chang, In-Soon
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.327-334
    • /
    • 1992
  • As a promising method for the volume reduction of the low-level liquid waste, the pervaporation process was studied using a cellulose acetate membrane. Experimental results showed that the pervaporation method, usually applied to separation of organic materials, has a good decontamination effect for the volume reduction of liquid waste and the evaporation rate of water in this process was markedly faster than that of natural evaporation method, a wide-used process for the volume reduction of liquid waste. Depending on the feed solution conditions, the pervaporation characteristics were evaluated by the experimental results and the optimum conditions for preparation of the cellulose acetate membrane were established to increase the pervaporation flux through the membrane.

  • PDF

Site Monitoring and investigation plan for LILW disposal (방사성폐기물 처분장 부지감시 계획)

  • Baek, Seung-Jong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.369-385
    • /
    • 2008
  • The purpose of site monitoring and investigation is to offer the basic data for performance assessment and design of low- and intermediate-level radioactive waste(LILW) disposal facility by monitoring variations of main site properties continually in the stage of pre-operation, operation and post-closure. Main contents of site monitoring are as follows. In the stage of pre-operation, suitability evaluation for disposal facility and monitoring for constructing and operating disposal facility are performed. In the operation period, monitoring is performed including surroundings to research the influence to environment with operating disposal facility and operate safely and efficiently. In the post-closure period, monitoring about major site properties is performed to prevent the effect of radioactive waste from disposal facility and to secure long-term safety.

  • PDF

Design for Landfill Gas Application by Low Calorific Gas Turbine and Green House Optimization Technology (Low Calorific Gasturbine 매립지 적용 및 유리온실 운용기술 설계)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Lee, Jung-Bin;Rhim, Sang-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.244.1-244.1
    • /
    • 2010
  • Bio energy development by using Low Calorific Gas Turbine(LCGT) has been developed for New & Renewable energy source for next generation power system, low fuel and operating cost method by using the renewable energy source in landfill gas (LFG), Food Waste, water waste and Livestock biogas. Low calorific fuel purification by pretreatment system and carbon dioxide fixation by green house system are very important design target for evaluate optimum applications for bio energy. Main problems and accidents of Low Calorific Gas Turbine system was derived from bio fuel condition such as hydro sulfide concentration, siloxane level, moisture concentration and so on. Even if the quality of the bio fuel is not better than natural gas, LCGT system has the various fuel range and environmental friendly power system. The mechanical characterisitics of LCGT system is a high total efficiency (>70%), wide range of output power (30kW - 30MW class) and very clean emmission from power system (low NOx). Also, we can use co-generation system. A green house designed for four different carbon dioxide concentration from ambient air to 2000 ppm by utilizing the exhaust gas and hot water from LCGT system. We look forward to contribute the policy for Renewable Portfolio Standards(RPS) by using LCGT power system.

  • PDF

A Study on the necessity of development for the Curriculum related to Marine Transportation of Radioactive waste (방사성폐기물 해상운송과 관련된 교육과정 개발의 필요성에 대한 연구)

  • KIM, Jin-kwon;HONG, Jeong-Hyuk;KIM, Won-Wook;KIM, Jong-Kwan;LEE, Chang-Hee
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.3
    • /
    • pp.920-931
    • /
    • 2017
  • Since the export of Korean-type APR 1400 in 2009 to the UAE, Korea has been achieved management performance, quality inspections, training, nuclear fuel exports for the nuclear power plant. Despite this apparent growth, there are lacking of the research on the marine transportation of radioactive waste. And the terrible accident at the Japan nuclear power plant in 2011 has caused another reconsideration such as emergency response training and plan, reinforcement of safety regulation. According to the Korean government aims to rebuild the appropriate regulation, training, education that is necessary in order to ensure the safety of marine transportation of radioactive waste. Therefore, this study analyzed the various problems identified by the team of experts for the radioactive waste and marine field, the investigation of relevant legal basis, the need for emergency response training for the person in charge of radioactive waste and suggested the simulation-based interactive curriculum during the process of safety verification related to the marine transport of mid- and low-level radioactive waste generated at the Yeon-ggwang nuclear power(Hanbit) plant in 2015.

A Deterministic Safety Assessment of a Pyro-processed Waste Repository (A-KRS 처분 시스템 결정론적 안전성 평가)

  • Lee, Youn-Myoung;Jeong, Jongtae;Choi, Jongwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.171-188
    • /
    • 2012
  • A GoldSim template program for a safety assessment of a hybrid-typed repository system, called "A-KRS," in which two kinds of pyro-processed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyro-processing of PWR nuclear spent fuels are disposed of, has been developed. This program is ready both for a deterministic and probabilistic total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios. The A-KRS has been deterministically assessed with 5 various normal and abnormal scenarios associated with nuclide release and transport in and around the repository. Dose exposure rates to the farming exposure group have been evaluated in accordance with all the scenarios and then compared among other.

A Probabilistic Safety Assessment of a Pyro-processed Waste Repository (A-KRS 처분 시스템 확률론적 안전성 평가)

  • Lee, Youn-Myoung;Jeong, Jongtae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.263-272
    • /
    • 2012
  • A GoldSim template program for a safety assessment of a hybrid-typed repository system, called A-KRS, in which two kinds of pyro-processed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyro-processing of PWR nuclear spent fuels are disposed of, has been developed. This program is ready both for a deterministic and probabilistic total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios. The A-KRS has been probabilistically assessed with 9 selected input parameters, each of which has its own statistical distribution for a normal release and transport scenario associated with nuclide release and transport in and around the repository. Probabilistic dose exposure rates to the farming exposure group have been evaluated. A sensitivity of 9 selected parameters to the result has also been investigated to see which parameter is more sensitive and important to the exposure rates.

Seismic Fragility Evaluation of Surface Facility Structures in Intermediate-Low Level Radioactive Waste Repository (중.저준위 방사성폐기물 처분장의 지상시설에 대한 지진 취약도 평가)

  • Park, Jun-Hee;Kim, Min-Kyu;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.57-64
    • /
    • 2012
  • Since a seismic exceeding design load can result in exposing radioactive material during disposal process of radioactive wastes, the repository should be designed with enough seismic margin. In this paper, a seismic fragility analysis was performed to evaluate the seismic capacity of surface facility structures. According to the analysis results, since inspection & store facility and radioactive waste facility have a rectangle geometry, the seismic capacity was differently presented about 23%~43% according to the axis of structures. The HCLPF capacity of inspection & store facility and radioactive waste facility was 0.52g and 0.93g, respectively. And it was observed that seismic capacity of radioactive waste facility was similar to that of a containment for nuclear power plants.

Study on Dose Rate on the Surface of Cask Packed with Activated Cut-off Pieces from Decommissioned Nuclear Power Plant

  • Park, Kwang Soo;Kim, Hae Woong;Sohn, Hee Dong;Kim, Nam Kyun;Lee, Chung Kyu;Lee, Yun;Lee, Ji Hoon;Hwang, Young Hwan;Lee, Mi Hyun;Lee, Dong Kyu;Jung, Duk Woon
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.4
    • /
    • pp.178-186
    • /
    • 2020
  • Background: Reactor pressure vessel (RV) with internals (RVI) are activated structures by neutron irradiation and volume contaminated wastes. Thus, to develop safe and optimized disposal plan for them at a disposal site, it is important to perform exact activation calculation and evaluate the dose rate on the surface of casks which contain cut-off pieces. Materials and Methods: RV and RVI are subjected to neutron activation calculation via Monte Carlo methodology with MCNP6 and ORIGEN-S program-neutron flux, isotopic specific activity, and gamma spectrum calculation on each component of RV and RVI, and dose rate evaluation with MCNP6. Results and Discussion: Through neutron activation analysis, dose rate is evaluated for the casks containing cut-off pieces produced from decommissioned RV and RVI. For RV cut-off ones, the highest value of dose rate on the surface of cask is 6.97 × 10-1 mSv/hr and 2 m from it is 3.03 × 10-2 mSv/hr. For RVI cut-off ones, on the surface of it is 0.166 × 10-1 mSv/hr and 2 m from it is 1.04 × 10-1 mSv/hr. Dose rates for various RV and RVI cut-off pieces distributed lower than the limit except the one of 2 m from the cask surface of RVI. It needs to adjust contents in cask which carries highly radioactive components in order to decrease thickness of cask. Conclusion: Two types of casks are considered in this paper: box type for very-low-level waste (VLLW) as well as low-level waste (LLW) and cylinder type for intermediate-level waste (ILW). The results will contribute to the development of optimal loading plans for RV and RVI cut-off pieces during the decommissioning of nuclear power plant that can be used to prepare radioactive waste disposal plans for the different types of wastes-ILW, LLW, and VLLW.

Introduction of Two-region Model for Simulating Long-Term Erosion of Bentonite Buffer (벤토나이트 완충재 장기 침식을 모사하기 위한 Two-region 모델 소개)

  • Jaewon Lee;Jung-Woo Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.228-243
    • /
    • 2023
  • Bentonite is widely recognized and utilized as a buffer material in high-level radioactive waste repositories, mainly due to its favorable characteristics such as swelling capability and low permeability. Bentonite buffers play an important role in ensuring the safe disposal of radioactive waste by providing a low permeability barrier and effectively preventing the migration of radionuclides into the surrounding rock. However, the long-term performance of bentonite buffers still remains a subject of ongoing research, and one of the main concerns is the erosion of the buffer induced by swelling and groundwater flow. The erosion of the bentonite buffer can significantly impact repository safety by compromising the integrity of buffer and leading to the formation of colloids that may facilitate the transport of radionuclides through groundwater, consequently elevating the risk of radionuclide migration. Therefore, it is very important to numerically quantify the erosion of bentonite buffer to evaluate the long-term performance of bentonite buffer, which is crucial for the safety assessment of high-level radioactive waste disposal. In this technical note, Two-region model is introduced, a proposed model to simulate the erosion behavior of bentonite based on a dynamic bentonite diffusion model, and quantitative evaluation is conducted for the bentonite buffer erosion with this model.

Development of a Compression/Absorption Hybrid Heat Pump System Using $NH_3/H_2O$ Mixture for High Temperature Generation ($NH_3/H_2O$를 이용한 압축-흡수식 고온제조 하이브리드 히트펌프 시스템 개발)

  • Kim, Min-Sung;Baik, Young-Jin;Shin, Kwang-Ho;Park, Seong-Ryong;Chang, Ki-Chang;Lee, Young-Soo;Ra, Ho-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1249-1254
    • /
    • 2008
  • Industrial low temperature waste heat exists sparse in surroundings but its amount is huge. However, large portion of waste heat is discarded due to its poor recovery quality and inferior application technologies. The heat pump system in this research is based on the hybrid combination of compression cycle and absorption cycle in order to recycle various kind of industrial waste heat effectively. The prime objective is to design a compression absorption hybrid heat pump system which can produce high temperature above the level of $90^{\circ}C$ and low temperature of $20^{\circ}C$ at the same time using waste heat water of $50^{\circ}C$. A mathematical simulation was carried out as a basis to design a prototype 3 RT class hybrid heat pump. From the simulation results, fundamental parameters to design the system were obtained.

  • PDF