• Title/Summary/Keyword: Low level waste

Search Result 422, Processing Time 0.023 seconds

Gas Migration in Low- and Intermediate-Level Waste (LILW) Disposal Facility in Korea (중·저준위 방사성폐기물 처분시설 폐쇄후 기체이동)

  • Ha, Jaechul;Lee, Jeong-Hwan;Jung, Haeryong;Kim, Juyub;Kim, Juyoul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.267-274
    • /
    • 2014
  • The first Low- and Intermediate-Level Waste (LILW) disposal facility with 6 silos has been constructed in granite host rock saturated with groundwater in Korea. A two-dimensional numerical modeling on gas migration was carried out using TOUGH2 with EOS5 module in the disposal facility. Laboratory-scale experiments were also performed to measure the important properties of silo concrete related with gas migration. The gas entry pressure and relative gas permeability of the concrete was determined to be $0.97{\pm}0.15bar$ and $2.44{\times}10^{-17}m^2$, respectively. The results of the numerical modeling showed that hydrogen gas generated from radioactive wastes was dissolved in groundwater and migrated to biosphere as an aqueous phase. Only a small portion of hydrogen appeared as a gas phase after 1,000 years of gas generation. The results strongly suggested that hydrogen gas does not accumulate inside the disposal facility as a gas phase. Therefore, it is expected that there would be no harmful effects on the integrity of the silo concrete due to gas generation.

The Assessment of Exposure Dose of Radiation Workers for Decommissioning Waste in the Radioactive Waste Inspection Building of Low and Intermediate-Level Radioactive Waste Disposal Facility (경주 중·저준위방사성폐기물 처분시설의 방폐물검사건물에서 해체 방사성폐기물 대상 방사선작업종사자의 피폭선량 평가 및 작업조건 도출)

  • Kim, Rin-Ah;Dho, Ho-Seog;Kim, Tae-Man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2_spc
    • /
    • pp.317-325
    • /
    • 2020
  • The Korea Radioactive Waste Agency plans to expand the storage capacity of radioactive waste by constructing a radioactive waste inspecting building to solve the problem of the lack of inspection space and drum-handling space in the radioactive waste receipt and storage building for the first-stage disposal facility. In this study, the exposure doses of radiation workers that handle new disposal containers for decommissioning waste in the storage areas of the radioactive waste inspecting building were calculated using the Monte Carlo N-particle transport code. The annual collective dose was calculated as a total of 84.8 man-mSv for 304 new disposal containers and an estimated annual 306 working hours for the radiation work. When the 304 new disposal containers (small/medium type) were stored in the storage areas, it was found that 25 radiation workers should be involved in acceptance/disposal inspection, and the estimated exposure dose per worker was calculated as an average annual value of 3.39 mSv. When the radiation workers handle the small containers in high-radiation dose areas, the small containers should be shielded further by increasing the concrete liner thickness to improve the work efficiency and radiation safety of the radiation workers. The results of this study will be useful in establishing the optimal radiation working conditions for radiation workers using the source term and characteristics of decommissioning waste based on actual measurements.

The Comparison on Treatment Method of Liquid Radioactive Waste in Yonggwang #3&4 and #5&6 (영광 3&4와 5&6호기에서 액체 방사성폐기물 처리방법의 비교)

  • Yeom, Yu-Seon;Kim, Soong-Pyung;Lee, Seung-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.3
    • /
    • pp.219-230
    • /
    • 2004
  • Most of the low-level liquid radioactive wastes generated from PWR plants are classified into high or low total suspended solid(HTDS or LTDS), and into radiochemical and radioactive laundry waste. Although the evaporation process has a high decontami- nation ability, it has several problems such as corrosion, foam, and congestion. A new liquid waste disposal process using the ion-exchange demineralizer(IED), instead of the current evaporation process, has been introduced into the Yonggwang NPP #5 and 6. These two methods have been compared to understand the differences in this study. Aspects compared here were the released radioactivity amount of the liquid radioactive wastes, the dose of off-site residents, the decontamination factor, and the amount of the solid radioactive wastes. The IED system is designed to discharge higher radioactivity about 20% than the evaporating system, and the actual radioactivity released from the evaporating and IED system were 0.473mCi and 1.098mCi, respectively. The radioactivity released from the IED was 2.32 times higher than that of the evaporating system. The dose of off-site residents was $2.97{\times}10^{-6}$mSv for the evaporating system, and $6.47{\times}10^{-6}$mSv for IED. The decontamination factor(DF) of the evaporator is, in most cases, far lower than the lower limits of detection(LLD) with the Ge-Li detector. Due to the low concentration of the liquid wastes collected from the liquid waste system, the decontamination factor of IED is very low. Since there is not enough data on the amount of solid radioactive wastes generated by the evaporation system, the comparison on these two systems has been conducted on the basis of the design, and the comparison result was that the evaporating system generated more wastes about 40% than IED.

  • PDF

Selectivity and structural integrity of a nanofiltration membrane for treatment of liquid waste containing uranium

  • Oliveira, Elizabeth E.M.;Barbosa, Celina C.R.;Afonso, Julio C.
    • Membrane and Water Treatment
    • /
    • v.3 no.4
    • /
    • pp.231-242
    • /
    • 2012
  • The performance of a nanofiltration membrane for treatment of a low-level radioactive liquid waste was investigated through static and dynamic tests. The liquid waste ("carbonated water") was obtained during conversion of $UF_6$ to $UO_2$. In the static tests membrane samples were immersed in the waste for 24, 48 or 72 h. The transport properties of the samples (hydraulic permeability, permeate flow, selectivity) were evaluated before and after immersion in the waste. In the dynamic tests the waste was permeated in a permeation flow front system under 0.5 MPa, to determine the selectivity of NF membranes to uranium. The surface layer of the membrane was characterized by zeta potential, field emission microscopy, atomic force spectroscopy and infrared spectroscopy. The static test showed that the pore size distribution of the selective layer was altered, but the membrane surface charge was not significantly changed. 99% of uranium was rejected after the dynamic tests.

Prediction of Radionuclide Inventory for Low- and Intermediate-Level Radioactive Waste by Considering Concentration Limit of Waste Package (처분방사능량제한치를 고려한 중저준위 방사성폐기물 처분시설의 핵종재고량 산정(안))

  • Jung, Kang Il;Kim, Min Seong;Jeong, Noh Gyeom;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.65-82
    • /
    • 2017
  • The result of a preliminary safety assessment that was completed by applying the radionuclide inventory calculated on the basis of available data from radioactive waste generation agencies suggested that many difficulties are to be expected with regard to disposal safety and operation. Based on the results of the preliminary safety assessment of the entire disposal system, in this paper, a unit package exceeding the safety goal is selected that occupies a large proportion of radionuclides in intermediate-level radioactive waste. We introduce restrictions on the amount of radioactivity in a way that excludes the high surface dose rate of the package. The radioactivity limit for disposal will be used as the baseline data for establishing the acceptance criteria and the disposal criteria for each disposal facility to meet the safety standards. It is necessary to draw up a comprehensive safety development plan for the Gyeongju waste disposal facility that will contribute to the construction of a Safety Case for the safety optimization of radioactive waste disposal facilities.

Preliminary Evaluation of Radiological Impact for Domestic On-road Transportation of Decommissioning Waste of Kori Unit 1

  • Dho, Ho-Seog;Seo, Myung-Hwan;Kim, Rin-Ah;Kim, Tae-Man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.537-548
    • /
    • 2020
  • Currently, radioactive waste for disposal has been restricted to low and intermediate level radioactive waste generated during operation of nuclear power plants, and these radioactive wastes were managed and disposed of the 200 L and 320 L of steel drums. However, it is expected that it will be difficult to manage a large amount of decommissioning waste of the Kori unit 1 with the existing drums and transportation containers. Accordingly, the KORAD is currently developing various and large-sized containers for packaging, transportation, and disposal of decommissioning waste. In this study, the radiation exposure doses of workers and the public were evaluated using RADTRAN computational analysis code in case of the domestic on-road transportation of new package and transportation containers under development. The results were compared with the domestic annual dose limit. In addition, the sensitivity of the expected exposure dose according to the change in the leakage rate of radionuclides in the waste packaging was evaluated. As a result of the evaluation, it was confirmed that the exposure dose under normal and accident condition was less than the domestic annual exposure dose limit. However, in the case of a number of loading and unloading operations, working systems should be prepared to reduce the exposure of workers.

A Pre-Study on the Estimation of NPP Decommissioning Radioactive Waste and Disposal costs for Applying New Classification Criteria (신 분류기준을 적용하기 위한 원전 해체폐기물량 및 처분 비용 산정에 대한 사전 연구)

  • Song, Jong Soon;Kim, Young-Guk;Lee, Sang-Heon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.1
    • /
    • pp.45-53
    • /
    • 2015
  • Since the commercial operation of Kori Unit #1 nuclear power plant(NPP) started in 1978, 23 units at present are operating in Korea. Radioactive wastes will be steadily generated from these units and accumulated. In addition, the life-extension of NPPs, construction of new NPPs and decontamination and decommissioning research facilities will cause radioactive wastes to increase. Recently, Korea has revised the new classification criteria as was proposed by IAEA. According to the revised classification criteria, low-level, very-low-level and exempt waste are estimated to about 98% of total disposal amount. In this paper, current status of overseas cases and disposal method with new classification criteria are analyzed to propose the most reasonable method for estimating the amount of decommissioning waste when applying the new criteria.

Assessment of Gas Generation in Underground Repository of Low-Level Waste (저준위 방사성폐기물 처분장에서의 기체 발생 평가)

  • Cho, Chan-Hee;Kim, Chang-Lak;Lee, Myung-Chan;Park, Heui-Joo
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.79-92
    • /
    • 1996
  • In a repository containing low-level waste, gas generation will occur principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. This paper describes a mathematical model designed to address gas generation by these mechanisms and assesses the potential effects of gas generation on the performance of a radioactive waste repository. The metal corrosion model incorporates a three-stage process encompassing aerobic and anaerobic corrosion regimes ; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. A prediction is made for gas concentrations and generation rates over an assessment period of ten thousand years in a radioactive waste repository. The results suggest that H$_2$will be the principal gas generated within the radioactive waste cavern.

  • PDF

Evaluation on SGBD demineralizers and Optimized Cation/Anion Resin ratio in PWR NPPs

  • Sung Ki-Bang;Nam Yong-Jae;Lee Jae-Sung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.79-86
    • /
    • 2005
  • In PSR on the Kori 3&4 NPP, The low level radioactive waste resin from SGBD demineralizer is more than $65\%$ of total waste resin in NPP So, it needs to be improved. The secondary cooling water pH control methods are used ammonia-AVT from the first. According to changing ETA which is better than ammonia, SGBD cation load is increased about 2-3 times. Waste resin product is also increased in proportion to the SGBD cation load. To reduce the waste volume, new cation resin exchange criteria is confirmed that demineralizer is almost saturated.

  • PDF

Adsorption Study on the Radioactive Liquids by Korean Vermiculite (한국산(韓國産) Vermiculite에 의(依)한 방사성동위원소(放射性同位元素) 흡착연구(吸着硏究))

  • Moon, Suc-Hyong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.7 no.1
    • /
    • pp.51-54
    • /
    • 1973
  • The use of ion-exchange resins for the treatment of radioactive wastes has many advantages, but thes eare rather expensive as compared with the Korean vermiculite. The Korean vermiculite has slightly different chemical constituents from the ones produced in other countries, and its physical properties might be applicable to the management of radioactive waste, in a small nuclear installation. The decontaminating effect of Korean vermiculite for the low-level radioactive liquid was investigated. $^{106}Ru,\;^{90}Sr,\;and\;^{137}Cs$ were utilized for the experiments. The removal rates by Korean vermiculite were calculated for $^{106}Ru,\;^{90}Sr\;and\;^{137}Cs$ and the removal rates increased as the weight of vermiculite in the exchange column increased. The decontaminating constants, $K_d$ of the Korean vermiculite for $^{106}Ru,\;^{90}Sr\;and\;^{137}Cs$ were 2.7, 69.3 and 263ml/g respectively. Through the results of experiments, the application of Korean vermiculite column to the treatment of low-level radioactive waste is quite feasible.

  • PDF