• Title/Summary/Keyword: Low frequency current

Search Result 1,489, Processing Time 0.025 seconds

A Comparison of Muscle Strength by Russian Current and Low Frequency Current Stimulation in Normal Adult (정상성인에서 러시안 전류와 저주파 전류 자극에 의한 근력 증가의 비교)

  • Kim, Jong-Youl
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.6 no.3
    • /
    • pp.353-360
    • /
    • 2011
  • Purpose : The purpose of this study was to compare the effect of muscle strength by stimulation of russian current and low frequency. Methods : The subjects were thirty young healthy volunteers who were divided into two groups including russian current group(n=15) and low frequency group(n=15). The intervention was applied totally 12 times (1 time, 10 minute) for 4weeks in each group. The peak torque and average power were measured and analysed using Biodex system 4 before the treatment, after 2 weeks, 4 weeks. Results : As a result, russians currents and low frequency stimulation increased significantly average power and peak torque with the lapse of time. However, there were not significant differences of the average power and peak torque between the groups in all periods. Conclusion : In conclusion, russians currents and low frequency stimulation had no differences in the increase of muscle strength.

Development of Robust Algorithm to Eliminate Low Frequency Current Ripples in Fuel Cell Generation System (동적변화에 강인한 연료전지 발전시스템의 저주파 리플전류 제거 알고리즘 개발)

  • Kim, Jong-Soo;Kang, Hyun-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1720-1727
    • /
    • 2009
  • This paper presents that generation and propagation mechanism of low frequency current ripples generated by a rectification effect of an inverter in fuel cell generation system is analyzed. The ripple reduction methode using hardware components such as capacitors and inductors is examined to reduce low frequency current ripples. A new fast and robust low frequency current ripple elimination algorithm is then proposed to incorporate a single loop current controller, which directly controls fuel cell current, without any extra hardware. The proposed algorithm can completely eliminate this current ripple as well as an overshoot or undershoot is significantly reduced. And the de link voltage and output current are well regulated by inverter controller. The validity of proposed algorithm is verified both computer simulation using PSIM 6.0 and experiment with a 1kW laboratory prototype.

Effect of Load Modeling on Low Frequency Current Ripple in Fuel Cell Generation Systems

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Kang, Hyun-Soo;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.307-318
    • /
    • 2010
  • In this work, an accurate analysis of low frequency current ripple in residential fuel cell power generation systems is performed based on the proposed residential load model and its unique operation algorithm. Rather than using a constant dc voltage source, a proton exchange membrane fuel cell (PEMFC) model is implemented in this research so that a system-level analysis considering the fuel cell stack, power conditioning system (PCS), and the actual load is possible. Using the attained results, a comparative study regarding the discrepancies of low frequency current ripple between a simple resistor load and a realistic residential load is performed. The data indicate that the low frequency current ripple of the proposed residential load model is increased by more than a factor of two when compared to the low frequency current ripple of a simple resistor load under identical conditions. Theoretical analysis, simulation data, and experimental results are provided, along with a model of the load usage pattern of low frequency current ripples.

Current Decoupling Control for the Three-level PWM Rectifier with a Low Switching Frequency

  • Yuan, Qing-Qing;Xia, Kun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.280-287
    • /
    • 2015
  • Three-level PWM rectifiers applied in medium voltage applications usually operate at low switching frequency to keep the dynamic losses under permitted level. However, low switching frequency brings a heavy cross-coupling between the current components $i_d$ and $i_q$ with a poor dynamic system performance and a harmonic distortion in the grid-connecting current. To overcome these problems, a mathematical model based on complex variables of the three-level voltage source PWM rectifier is firstly established, and the reasons of above issues resulted from low switching frequency have been analyzed using modern control theory. Then, a novel control strategy suitable for the current decoupling control based on the complex variables for $i_d$ and $i_q$ is designed here. The comparisons between this kind of control strategy and the normal PI method have been carried out. MATLAB and experimental results are given in detail.

Measurement of Low-Frequency Ocean Noise by a Self-Recording Hydrophone (자동기록식 수중청음기를 이용한 저주파 해양잡음의 측정)

  • Kim, Bong-Chae;Kim, Byoung-Nam;Cho, Hong-Sang
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.311-316
    • /
    • 2007
  • Ocean noise may be used for monitoring wind speed and rainfall rate on the sea surface, as well as for tracking whales' migration routes. In particular, low-frequency ocean noise has recently been of concern with relation to the behavior of marine mammals. Low-frequency ocean noise has been increasing over the past few decades due to increase of ship traffic and offshore oil industry activities. Mechanical noise such as flow noise and cable strumming noise may be induced if low-frequency ocean noise is measured by cabled traditional hydrophone in high current areas. To successfully measure low-frequency ocean noise in a shallow water environment with strong current, we developed a self-recording hydrophone. This paper describes the main configurations of the self-recording hydrophone and presents some results on measured data.

Design of a BJT low-voltge low-frequency filter using current amplifier (전류증폭기를 이용한 BJT 저전압 저주파 필터 설계)

  • 안정철;최석우;윤창훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.5
    • /
    • pp.33-40
    • /
    • 1998
  • In this paper, a design of current-mode continuous-time filters for low voltage and low frequency applications using complementary bipolar current mirrors is presented. The proposed current-mode filters consist of simple bipolar current mirrors and capacitors and are quite suitable for monolithic integration. Since the design method of the proposed current-mode filters are based on the integrator type of realization, it can be used for a wide range of applications. Since the input impedance of simple bipolar current mirror is small, in this paper, negative feedback amplifier is used to realize is designed by cascade method. The cutoff frequency of the designed filter can be easily tunable by the DC controlling current from 60kHz to 120kHz. The characteristics of the designed current-mode filters are simulated and examined by SPICE using standard bipolar transistor parameters.

  • PDF

Low Frequency Current Ripple Mitigation of Two Stage Three-Phase PEMFC Generation Systems

  • Deng, Huiwen;Li, Qi;Liu, Zhixiang;Li, Lun;Chen, Weirong
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2243-2257
    • /
    • 2016
  • This paper presents a two stage three-phase proton exchange membrane fuel cell (PEMFC) generation system. When the system is connected to a three-phase load, it is very sensitive to the characteristics and type of the load. Especially unbalanced three-phase loads, which result in a pulsating power that is twice the output frequency at the inverter output, and cause the dc-link to generate low frequency ripples. This penetrates to the fuel cell side through the front-end dc-dc converter, which makes the fuel cell work in an unsafe condition and degrades its lifespan. In this paper, the generation and propagation mechanism of low frequency ripple is analyzed and its impact on fuel cells is presented based on the PEMFC output characteristics model. Then a novel method to evaluate low frequency current ripple control capability is investigated. Moreover, a control scheme with bandpass filter inserted into the current feed-forward path, and ripple duty ratio compensation based on current mode control with notch filter is also proposed to achieve low frequency ripple suppression and dynamic characteristics improvement during load transients. Finally, different control methods are verified and compared by simulation and experimental results.

Frequency Response Characteristics of Fluorescent OLED with Alternating Current Driving Method (교류구동방식에 의한 형광 OLED의 주파수 응답 특성)

  • Seo, Jung-Hyun;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.40-46
    • /
    • 2019
  • To study the frequency response characteristics of alternating-current-driven organic light-emitting diodes (OLEDs), we fabricated blue-fluorescent OLEDs and analyzed their electroluminescent characteristics according to the alternating current voltage and frequency. The luminance-frequency characteristics of alternating-current-driven OLED was similar to that of a low-pass filter, and the luminance of high-voltage OLED decreased at higher frequency than low-voltage OLED. The luminance characteristics of the OLED according to the frequency is due to the capacitive reactance in the OLED, generated during the alternating current driving. The frequency response characteristics of the OLED according to the voltage is due to the decrease in internal resistance of the organic layer. In addition, the negative voltage component of the alternating current did not affect the frequency response of the OLED. Therefore, the electroluminescent characteristics of OLED with an alternating current power of 60 Hz are not influenced by the frequency.

Analysis on Waveform of Leakage Current of Contaminated EPDM Insulators by Salt Fog (Salt fog에 의한 오손된 EPDM애자의 누설전류 파형 분석)

  • Park, Jae-Jun;Song, Young-Chul;Kim, Jeong-Boo;Lee, You-Min;Lee, Hyun-Dong;Jung, Young-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.36-41
    • /
    • 2003
  • This paper presents the results of power spectra using the fundamental and low frequency harmonic components of leakage current waveform to study aging on contaminated EPDM insulator(was serviced during 1997-2001, region Pohang, korea) under salt fog conditions. Experiments have been conducted in the chamber salt fog and at the 16KVrms. The salt contents adjusted as 0g,25g,50g and 75g per liter of deionized water. The onset of dry-band arcing on polymer insulators could be determined by signal processing the low frequency harmonics components. A correlation has been found between the fundamental and low harmonic components of power spectra on leakage current. Where aging could be associated with an increase in the level of both the fundamental and low frequency harmonics components of leakage current. Surface aging for contaminated EPDM insulators occurred when the fundamental component of leakage current was greater then some level On the other hand, when the polymer insulator approached failure, the fundamental component of leakage current reached relatively high values and low frequency harmonics components of the leakage current trended to decrease. The results suggest that both the fundamental and low frequency harmonics of leakage current can be used as a tool to determine both the beginning of aging and before flashover, end of life EPBM insulator in salt fog.

  • PDF

Linear cascode current-mode integrator (선형 캐스코드 전류모드 적분기)

  • Kim, Byoung-Wook;Kim, Dae-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.10
    • /
    • pp.1477-1483
    • /
    • 2013
  • This paper proposes a low-voltage current-mode integrator for a continuous-time current-mode baseband channel selection filter. The low-voltage current-mode linear cascode integrator is introduced to offer advantages of high current gain and improved unity-gain frequency. The proposed current-mode integrator has fully differential input and output structure consisting of CMOS complementary circuit. Additional cascode transistors which are operated in linear region are inserted for bias to achieve the low-voltage feature. Frequency range is also controllable by selecting proper bias voltage. From simulation results, it can be noticed that the implemented integrator achieves design specification such as low-voltage operation, current gain, and unity gain frequency.