• Title/Summary/Keyword: Low energy building

Search Result 542, Processing Time 0.022 seconds

Construction of Korean Space Weather Prediction Center: Space radiation effect

  • Lee, Jae-Jin;Cho, Kyung-Suk;Hwang, Jung-A;Kwak, Young-Sil;Kim, Khan-Hyuk;Bong, Su-Chan;Kim, Yeon-Han;Park, Young-Deuk;Choi, Seong-Hwan
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.33.3-34
    • /
    • 2008
  • As an activity of building Korean Space Weather Prediction Center (KSWPC), we has studied of radiation effect on the spacecraft components. High energy charged particles trapped by geomagnetic field in the region named Van Allen Belt can move to low altitude along magnetic field and threaten even low altitude spacecraft. Space Radiation can cause equipment failures and on occasions can even destroy operations of satellites in orbit. Sun sensors aboard Science and Technology Satellite (STSAT-1) was designed to detect sun light with silicon solar cells which performance was degraded during satellite operation. In this study, we try to identify which particle contribute to the solar cell degradation with ground based radiation facilities. We measured the short circuit current after bombarding electrons and protons on the solar cells same as STSAT-1 sun sensors. Also we estimated particle flux on the STSAT-1 orbit with analyzing NOAA POES particle data. Our result clearly shows STSAT-1 solar cell degradation was caused by energetic protons which energy is about 700 keV to 1.5 MeV. Our result can be applied to estimate solar cell conditions of other satellites.

  • PDF

A study on the developments of STCW training of seafarers on ships applying in the IGF Code

  • Han, Se-Hyun;Lee, Young-Chan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1054-1061
    • /
    • 2015
  • The International Maritime Organization (IMO) has been regulating emissions by making mandatory the compliance with institutions aimed at protecting air quality such as the Energy Efficiency Design Index (EEDI), Ship Energy Efficiency Management Plan (SEEMP) and Tier III. Under the circumstances, one of the response measures considered to be the most feasible is the replacement of existing marine fuel with Liquefied Natural Gas (LNG). The industry has been preemptively building infrastructure and developing and spreading engine technology to enable the use of LNG-fueled ships. The IMO, in turn, recently adopted the International Code of Safety for Ships Using Gases or Other Low-Flash-Point Fuels (IGF Code) as an institutional measure. Thus, it is required to comply with regulations on safety-related design and systems focused on response against potential risk for LNG-fueled ships, in which low-flash-point fuel is handled in the engine room. Especially, the Standards of Training, Certification and Watchkeeping (STCW) Convention was amended accordingly. It has adopted the qualification and training requirements for seafarers who are to provide service aboard ships subject to the IGF Code exemplified by LNG-fueled ships. The expansion in the use of LNG-fueled ships and relevant facilities in fact is expected to increase demand for talents. Thus, the time is ripe to develop methods to set up appropriate STCW training courses for seafarers who board ships subject to the IGF Code. In this study, the STCW Convention and existing STCW training courses applied to seafarers offering service aboard ships subject to the IGF Code are reviewed. The results were reflected to propose ways to design new STCW training courses needed for ships subject to the IGF Code and to identify and improve insufficiencies of the STCW Convention in relation to the IGF Code.

Long-term Performance Prediction of Piezoelectric Energy Harvesting Road Using a 3-Dimensional Finite Element Method (3차원 유한요소 해석을 통한 압전에너지 도로의 장기 공용성 예측)

  • Kim, Hyun Wook;Nam, Jeong-Hee;Choi, Ji Young
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.107-115
    • /
    • 2017
  • PURPOSES : The piezoelectric energy road analysis technology using a three-dimensional finite element method was developed to investigate pavement behaviors when piezoelectric energy harvesters and a new polyurethane surface layer were installed in field conditions. The main purpose of this study is to predict the long-term performance of the piezoelectric energy road through the proposed analytical steps. METHODS : To predict the stresses and strains of the piezoelectric energy road, the developed energy harvesters were embedded into the polyurethane surface layer (50 mm from the top surface). The typical type of triaxial dump truck loading was applied to the top of each energy harvester. In this paper, a general purpose finite element analysis program called ABAQUS was used and it was assumed that a harvester is installed in the cross section of a typical asphalt pavement structure. RESULTS : The maximum tensile stress of the polyurethane surface layer in the initial fatigue model occurred up to 0.035 MPa in the transverse direction when the truck tire load was loaded on the top of each harvester. The maximum tensile stresses were 0.025 MPa in the intermediate fatigue model and 0.013 MPa in the final fatigue model, which were 72% and 37% lower than that of the initial stage model, respectively. CONCLUSIONS : The main critical damage locations can be estimated between the base layer and the surface layer. If the crack propagates, bottom-up cracking from the base layer is the main cracking pattern where the tensile stress is higher than in other locations. It is also considered that the possibility of cracking in the top-down direction at the edge of energy harvester is more likely to occur because the material strength of the energy harvester is much higher and plays a role in the supporting points. In terms of long-term performance, all tensile stresses in the energy harvester and polyurethane layer are less than 1% of the maximum tensile strength and the possibility of fatigue damage was very low. Since the harvester is embedded in the surface layer of the polyurethane, which has higher tensile strength and toughness, it can assure a good, long-term performance.

Design of a Steel Structural Building Using Double Split Tee Connections without Shear Tabs (전단탭이 없는 상·하부 스플릿 티 접합부를 적용한 강구조물의 설계)

  • Yang, Jae Guen;Kim, Yong Boem
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.2
    • /
    • pp.85-96
    • /
    • 2016
  • Double split tee connection has various strength, stiffness, and energy dissipation capacity according to changes of thickness of T-stub flange and gauge distance, number, and diameter of high-strength bolt. If the double split tee connection is applied to a low- or medium-rise steel structure, a shear tab can't be applied for supporting shear force because of geometrical limitation. So it is required to propose details of improved double split tee connection to support shear force as well as flexural force. This research was performed to see if enough rotational stiffness is found when the double split tee connection without shear tab which was obtained through analytic and experimental researches by Yang et al. is applied to a low- or medium-rise steel structure. Also, it was seen if the low- or medium-rise steel structure having double split tee connection without shear tab has safe structural behavior, as well as material saving effect.

Study on the Thermal Characteristics of Concrete Using Micro Form Admixture (마이크로기포제를 사용한 콘크리트의 열적 특성에 관한 연구)

  • Park, Young Shin;Kim, Jung Ho;Jeon, Hyun Kyu;Seo, Chee Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.101-109
    • /
    • 2013
  • Recently, it is certain that the increase of heating and cooling energy consumption by radical change in climate condition has caused serious problems related to environmental and energy concerns associated with increase of fossil fuel usage and carbon dioxide production as well as global warming. So, various actions to reduce greenhouse gas exhaustion and energy consumption have been prepared by world developed countries. Our government has also been trying to seek energy control methods for houses and buildings by proclaiming political polices on low-carbon green growth and construction and performance standards for environment-friendly housing. The energy consumption by buildings approximately reaches 25% of total korea energy consumption, and the increasing rate of energy consumption by buildings is stiffer than the rate by the other industries. The greatest part in the buildings of the energy consumption is building facade. While lots of research projects for reducing energy consumption of the facade have been conducted, but a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research presents here a study to improve the insulation property of structural concrete formed by micro form admixture (MFA) with experimentally reviewing the physical, mechanical and thermal characteristics of the concrete. As the results of this experiment, in the case of concrete mixed with MFA, slump loss has been improved. As the mixing ratio of MFA increases, the compressive strength is decreased and thermal conductivity is increased. Also it was found that water-cement ratio increases, the compressive strength is decreased and thermal conductivity is increased. but, there was not big influence by the change of fine aggregate ratio.

Sensitivity Analysis Study of Geotechnical Factors for Gas Explosion Vibration in Shallow-depth Underground Hydrogen Storage Facility (저심도 지하 수소저장소에서의 가스 폭발 진동에 대한 지반공학적 인자들의 민감도 분석 연구)

  • Go, Gyu-Hyun;Woo, Hyeon‑Jae;Cao, Van-Hoa;Kim, Hee-Won;Kim, YoungSeok;Choi, Hyun-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.169-178
    • /
    • 2024
  • While stable mid- to large-scale underground hydrogen storage infrastructures are needed to meet the rapidly increasing demand for hydrogen energy, evaluating the safety of explosion vibrations in adjacent buildings is becoming important because of gas explosions in underground hydrogen storage facilities. In this study, a numerical analysis of vibration safety effects on nearby building structures was performed assuming a hydrogen gas explosion disaster scenario in a low-depth underground hydrogen storage facility. A parametric study using a meta-model was conducted to predict changes in ground dynamic behavior for each combination of ground properties and to analyze sensitivity to geotechnical influencing factors. Directly above the hydrogen storage facility, the unit weight of the ground had the greatest influence on the change in ground vibration due to the explosion, whereas, farther away from the facility, the sensitivity of dynamic properties was found to be high. In addition, in evaluating the vibration stability of ground building structures based on the predicted ground vibration data and blasting vibration tolerance criteria, in the case of large reinforced concrete building structures, the ground vibration safety was guaranteed with a separation distance of about 10-30 m.

The Effect of Urban Trees on Residential Solar Energy Potential (도심 수목이 분산형 주거 태양광에너지 잠재량에 미치는 영향)

  • Ko, Yekang
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.1
    • /
    • pp.41-49
    • /
    • 2014
  • This study spatially assesses the impact of trees on residential rooftop solar energy potential using urban three-dimensional models derived from Light Detection and Ranging(LiDAR) data in San Francisco, California. In recent years on-site solar energy generation in cities has become an essential agenda in municipal climate action plans. However, it can be limited by neighboring environments such as shade from topography, buildings and trees. Of all these effects, the impact of trees on rooftop photovoltaics(PVs) requires careful attention because improper situation of solar panels without considering trees can result in inefficient solar energy generation, tree removal, and/or increasing building energy demand and urban heat island effect. Using ArcMap 9.3.1, we calculated the incoming annual solar radiation on individual rooftops in San Francisco and the reduced insolation affected by trees. Furthermore, we performed a multiple regression analysis to see what attributes of trees in a neighborhood(tree density, tree heights, and the variance of tree heights) affect rooftop insolation. The result shows that annual total residential rooftops insolation in San Francisco is 18,326,671 MWh and annual total light-loss reduction caused by trees is 326,406 MWh, which is about 1.78%. The annual insolation shows a wide range of values from $34.4kWh/m^2/year$ to $1,348.4kWh/m^2/year$. The result spatially maps the locations that show the various levels of impact from trees. The result from multiple regression shows that tree density, average tree heights and the variation of tree heights in a neighborhood have statistically significant effects on the rooftop solar potential. The results can be linked to municipal energy planning in order to manage potential conflicts as cities with low to medium population density begin implementing on-site solar energy generation. Rooftop solar energy generation makes the best contribution towards achieving sustainability when PVs are optimally located while pursuing the preservation of urban trees.

Design and Operation of the Rainwater-Greywater Hybrid System : SNU No. 39 Building (빗물-저농도 오수 하이브리드 시스템의 설계 및 운전 평가 : 서울대 39동)

  • Shim, In-tae;Park, Hyun-ju;Kim, Tschung-il;Jung, Sung-un;Han, Moo-young;Namkung, Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.12
    • /
    • pp.676-682
    • /
    • 2016
  • In this study, rainwater-greywater hybrid system was installed and operated for 1 year in order to evaluate its water quantity, water quality, and economic efficiency in building no. 39. This system was expected to overcome each disadvantages of and maximize each advantages. Low-greywater that was washed up from shower room was treated by MBR (Membrane Bioreactor) and ozone oxidation. Rainwater that was collected from the rooftop was stored in a reservoir, and then transferred to the storage tank that was mixed with treated greywater. After 1 year operating in building no. 39, rainwater and greywater was used to supply $2,599m^3$ of toilet flushing water. In terms of water quality, rainwater was satisfied far the greywater reuse standards except for E.coli. Moreover, low greywater quality was acceptable except for E. coli, BOD, SS, and turbidity. In addition, economic analysis was obtained from benefit-cost ratio (B/C) with 1.11. It implies that the feasibility of the project was reasonable. Furthermore, various research and policy to improve the economic efficiency of water recycling facilities is required to expand the use of water recycling facilities.

Synthesis and Characterization of New Dihydroindolo[3,2-b]indole and 5,6-Bis(octyloxy)-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole-Based Polymer for Bulk Heterojunction Polymer Solar Cells

  • Kranthiraja, Kakaraparthi;Gunasekar, Kumarasamy;Song, Myungkwan;Gal, Yeong-Soon;Lee, Jae Wook;Jin, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1485-1490
    • /
    • 2014
  • We have designed and developed a new ladder type tetrafused ${\pi}$-conjugated building block such as dihydroindolo[3,2-b]indole (DINI) and investigated its role as an electron rich unit. The photovoltaic properties of a new semiconducting ${\pi}$-conjugated polymer, poly[[5,10-bisoctyl-5,10-dihydroindolo[3,2-b]indole-[5,6- bis(octyloxy)-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole]], represented by PDINI-OBTC8 are described. The new polymer PDINI-OBTC8 was synthesized in donor-acceptor (D-A) fashion, where fused ${\pi}$-conjugated tetracyclic DINI, and 5,6-bis(octyloxy)-4,7-di(thiophen-2-yl) benzo[c][1,2,5]thiadiazole (OBTC8) were employed as electron rich (donor) and electron deficient (acceptor) moieties, respectively. The conventional bulk heterojunction (BHJ) device structure ITO/PEDOT:PSS/PDINI-OBTC8:PCB71M/LiF/Al was utilized to fabricate polymer solar cells (PSCs), which comprises the blend of PDINI-OBTC8 and [6,6]-phenyl-$C_{71}$-butyric acid methyl ester ($PC_{71}BM$) in BHJ network. A BHJ PSC that contain PDINI-OBTC8 delivered power conversion efficiency (PCE) value of 1.68% with 1 vol% of 1,8-diidooctane (DIO) under the illumination of A.M 1.5G 100 $mW/cm^2$.

A Comparative Study on the Landscape Color Perception according to Existence of Energy Business in Rural Areas (농촌의 에너지사업 유무에 따른 경관색채 인식 비교연구)

  • Kim, Eun-Ja;Han, Chae-Won;Choi, Jin-Ah;Kwon, Soon-Chan
    • Journal of Agricultural Extension & Community Development
    • /
    • v.24 no.2
    • /
    • pp.127-142
    • /
    • 2017
  • Recently, the rapidly growing new generation of renewable energy projects has emerged as an artificial building that creates a mix of natural environments and disruption to the environment. It serves as a quality inhibitor for rural landscapes and implies the absence of favorable rural landscape. Therefore, the study looked at the color scheme of residents, visitors, and experts in the village, which changed the color of the landscape, and analyzed the color scheme of residents, visitors, and experts. In order to do so, the village was divided into three types and conducted a survey by the general public and experts. In the case of the survey, residents of the three districts (Yeoju, Dam yang, Jeju) were surveyed for 210 residents, and the survey conducted a survey and analysis of 30 people in the area. As a result, both the general public and experts recognized the color change in the energy business, which resulted in the identification of associations and colors of the village. In addition, the recognition and satisfaction of the current situation showed that the education programs for the public were more important than the professionals, as the public show ed low levels of public awareness. Based on this research, we expect to be able to utilize the plan as a guideline for the project of installing solar panels, which is expected to be implemented in the beginning of the project, and can be used as a guideline for the establishment of the solar panels.