• 제목/요약/키워드: Low emission combustor

검색결과 85건 처리시간 0.021초

마이크로 가스터빈을 위한 하이브리드/이중 선회제트 연소기의 개발 (Part II: 비반응 유동구조에 관한 수치해석) (Development of a Hybrid/Dual Swirl Jet Combustor for a Micro-Gas Turbine (Part II: Numerical Analysis on Isothermal Flow Structure))

  • 문선여;황해주;황철홍;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.201-202
    • /
    • 2012
  • The isothermal flow structure and mixing characteristics of a hybrid/dual swirl jet combustor for micro-gas turbine were numerically investigated. Location of pilot nozzle, angle and direction of swirl vane were varied as main parameters with constant fuel flow rates for each nozzle. As a result, the variation in location of pilot nozzle resulted in significant change in turbulent flow field near burner exit, in particular, center toroidal recirculation zone (CTRZ) as well as turbulent intensity, and thus flame stability and emission characteristics might be significantly changed. The swirl angle of $45^{\circ}$ provided similar recirculating flow patterns in a wide range of equivalence ratio (0.5~1.0). Compared to the co-swirl flow, the counter-swirl flow leaded to the reduction in CTRZ and fuel-air mixing near the burner exit and a weak interaction between the pilot partially premixed flame and the lean premixed flame. With the comparison of experimental results, it was confirmed that the case of co-swirl flow and swirl $angle=45^{\circ}$ would provided an optimized combustor performance in terms of flame stability and pollutant emissions.

  • PDF

바이오가스 적용 캐비티 매트릭스 연소기 CFD 수치연산 (CFD Numerical Calcultion for a Cavity Matrix Combustor Applying Biogas)

  • 전영남;안준
    • 한국수소및신에너지학회논문집
    • /
    • 제33권5호
    • /
    • pp.598-606
    • /
    • 2022
  • With the advancement of industry, the use of various sustainable energy sources and solutions to problems affecting the environment are being actively requested. From this point of view, it is intended to directly burn unused biogas to use it as energy and to solve environmental problems such as greenhouse gases. In this study, a new type of cavity matrix combustor capable of low-emission complete combustion without complex facilities such as separation or purification of biogas produced in small and medium-sized facilities was proposed, and CFD numerical calculation was performed to understand the performance characteristics of this combustor. The cavity matrix combustor consists of a burner with a rectangular porous microwave receptor at the center inside a 3D cavity that maintains a rectangular parallelepiped shape composed of a porous plate that can store heat in the combustor chamber. As a result of numerical calculation, the biogas supplied to the inlet of the combustor is converted to CO and H2, which are intermediate products, on the surface of the 3D matrix porous burner. And then the optimal combustion process was achieved through complete combustion into CO2 and H2O due to increased combustibility by receiving heat energy from the microwave heating receptor.

저선회 연소기에서 합성천연가스(SNG) 연료의 수소함량에 따른 연소 특성 연구 (A Study on the Combustion Characteristics with Hydrogen Contents of SNG Fuel in Low-Swirl Combustor)

  • 정황희;강기중;이기만
    • 한국수소및신에너지학회논문집
    • /
    • 제28권2호
    • /
    • pp.181-189
    • /
    • 2017
  • This paper describes experimental results on combustion characteristics with hydrogen contents of synthetic natural gas (SNG) in low swirl combustor. To investigate the effect of hydrogen contents for premixed SNG flame, stability map, CH chemiluminescence images, flame spectrum analysis and emission performances were measured. In the results, as the hydrogen content was increased, the lean flammable limit was expanded and the flame length was decreased. The hydrogen contents affected the flame liftoff height, and it has different tendency according to the equivalence ratio and flame shape. The change of height and length of flame according to hydrogen contents is caused by the fast burning velocity of hydrogen, which can be confirmed by GRI 3.0 reaction mechanism in PREMIX code. The intensity of $OH^*$, $CH^*$ and $C_2^*$ was confirmed by spectrum analysis of flame. As a result, the $CH^*$ intensity was not significantly different according to hydrogen content. The increase of hydrogen contents influenced positively CO and NOx emission performances.

스월연소기에서 연료스월유동이 NOx 배출에 미치는 영향 (Influence of Fuel Swirl Flow on NOx Emission in Swirl Combustor)

  • 조진우;황상호;최경민;김덕줄
    • 한국항공우주학회지
    • /
    • 제33권7호
    • /
    • pp.70-75
    • /
    • 2005
  • 본 연구에서는 스월 연소기에서 연료스월유동이 NOx 배출특성에 미치는 영향을 실험적으로 조사하였다. 공기와 연료스월각을 변화시키기 위해 환형베인을 사용하였고 베인각의 변화에 따라 혼합공정을 변화시켰다. 공기스월이 강한 조건에서 연료 Counter-swirl의 경우, 비연소장에서 큰 난류강도의 특성을 나타내고 상대적으로 고주파 영역까지 높은 에너지를 가지고 있으며, 고온 영역이 좁게 나타났다. 이러한 연료 counter-swirl 영향으로 저NOx 배출특성이 나타났으며, NOx 저감 기구가 논의되었다.

환경친화형 연료분할-고속분사식 버너 개발 (A Development of Environmental-friendly Burner with High Injection Velocity by Multi-staged Fuel-injection)

  • 추재민;고영기;김종우;김철민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.148-155
    • /
    • 2005
  • In this study, Development of 300,000kcal/hr high velocity Injection burner with fuel multi-stage was performed using experiments. The characteristics of NOx emission in multi fuel/air staged combustor have been experimentally studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is largest access air combustion and the secondary flame is complete combustion zone, where most of fuel bums. Experiments were performed on an industrial scale in a laboratory furnace and Liquefied Natural Gas(LNG) was used as primary and secondary fuels. Comparison of outlet NOx and outlet Temperature under various air rate and primary/ secondary fuel ratio was performed. The test demonstrated that NOx emission con be reduced by 70% in accordance with operating conditions.

  • PDF

메탄/공기 대향류 예혼합화염의 NO 발생특성에 관한 수치해석 (A Numerical Analysis of the NO Emission Characteristics in $CH_4/Air$ Counterflow Premix Flame)

  • 조은성;정석호
    • 한국연소학회지
    • /
    • 제9권4호
    • /
    • pp.22-27
    • /
    • 2004
  • Lean premix combustion is a best method in low $NO_x$ gas turbine combustor and we must know the characteristics of NO emission in high temperature and pressure condition in premix flame. Numerical analysis was performed to investigate the NO emission characteristics by adopting a counterflow as a model problem using detailed chemical kinetics. Methane $(CH_4)$ was used as a test fuel which is the main fuel of natural gas. The tested parameters were stretch rate, equivalence ratio, initial temperature, and pressure in premix flame. Results showed that NO emission was high in low stretch rate, near stoichiometric equivalence ratio, high initial temperature, and high pressure. Also, the pressure effect was sensitive in high temperature condition.

  • PDF

공탑속도 및 과잉공기비에 따른 석탄유동층연소로의 조업특성 (Effect of Excess Air and Superficial Air Velocity on Operation Characteristics in a Fluidized Bed Coal Combustor)

  • 장현태;차왕석;태범석
    • 한국안전학회지
    • /
    • 제14권3호
    • /
    • pp.84-92
    • /
    • 1999
  • The effects of air velocity and excess air on combustion characteristics were studied in a fluidized bed combustor. The domestic low-grade anthracite coal with heating value of 2010 kcal/kg and the imported bituminous coal from Australia with heating value of 6520 kcal/kg were used as coal samples. The combustion characteristics of mixed fuels in a fluidized bed combustor could be interpreted by pressure fluctuation properties, ash distribution and gas emission. The properties of the pressure fluctuations, such as the standard deviation, cross-correlation function, dominant frequency and the power spectral density function, were obtained from the statistical analysis. From this study, the combustion region increased with increasing air velocity but decreased with excess air due to combustion characteristics of anthracite and bituminous coal.

  • PDF

공기 다단 분무연소기의 NOx 발생특성에 관한 실험적 연구 (Investigation of NOx Formation Charateristics in Multi Air Staged Spray Combustor)

  • 김한석;안국영;김호근;백승옥
    • 연구논문집
    • /
    • 통권31호
    • /
    • pp.23-43
    • /
    • 2001
  • An experimental investigation on the reduction of nitrogen oxide emission from swirling, turbulent diffusion flames was conducted using multi air staged combustor, The combustor utilizes swirler to dampen fuel/air mixing, allowing an extended residence time for fuel pyrolysis and fuel-N conversion chemistry in an locally fuel-rich environment prior to burnout. This process also allow to reduce thermal NOx formation to lessen the temperature of reaction zone. The aerodynamic process therefore emulates the conventional staged combustion process, but without the need for the physically separate fuel-rich and -lean stages. Parametric studies on the ratios of each staged air and droplet size were carried out the feasibility of fuel/air mixing for low NOx combustion with diesel and pyridine mixed diesel fuel oil.

  • PDF

다단 공기 공급 저 NOx 버너의 선회유동 및 연소특성에 관한 실험적 연구 - 다단공기공급에 의한 연소특성(I) - (A Study on Swirl Flow and Combustion Characteristics of Air Staged Low NOx Burner)

  • 신명철;안재현;김세원
    • 한국연소학회지
    • /
    • 제8권1호
    • /
    • pp.25-35
    • /
    • 2003
  • The objective of this research is to determine generally applicable design principles for the development of internally staged combustion devices. Utilizing a triple annulus combustor, the detailed combustion characteristics are studied. For this triple air staged combustor, the angular momentum weighted by it#s swirl number and air distribution ratio was observed to be the critical criteria of NOx emission. An internal recirculation zone which develops on the centerline of the flame immediately downstream of the burner entraps the fuel into a fuel rich eddy. Then sufficient heat must be transferred from the flame via radiation to the chamber heat transfer surfaces, such that the peak flame temperatures are suppressed when the second air is introduced. It is experimentally found out that the total NOx emission level in this type of burner is below 50ppm(3% Ref. O2) at optimum operating conditions.

  • PDF

이중원추형 모형연소기에서 압력과 공기비에 따른 화염 구조 및 NOx 배출특성 (Effect of pressure and stochiometric air ratio on flame structure and NOx emission in gas turbine dump combustor with double cone burner)

  • 남현수;한동식;김규보;전충환
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.177-179
    • /
    • 2012
  • This work presents an experimental investigation to study $NO_x$ emissions under stoichiometric air ratio and elevated pressure (2~10bar) in a High Press Combustor(HPC) equiped with double cone burner which was designed by Pusan Clean Coal Center(PC3). Exaust gas temperature and $NO_x$ emissions were measured at the end of the combustion chamber. The $OH^*$ radical concentration and $NO_x$ emission were decreased as a function of increasing ${\lambda}$ generally. On the other hand, $OH^*$ radical concentration and $NO_x$ emission increased with ${\lambda}$ pressure of the combustion chamber. $NO_x$ emissions which were governed by thermal $NO_x$, were highly increased under the elevated pressure, but slightly increased at sufficiently low fuel concentrations (${\lambda}>2.0$).

  • PDF