• Title/Summary/Keyword: Low emission combustor

Search Result 85, Processing Time 0.022 seconds

Performance Test of 21AFR Lean Fuel Module at Low and High Operating Conditions (21AFR 희박연료모듈의 저압 및 고압 연소성능시험)

  • Han, Yeoung-Min;Ko, Young-Sung;Yang, Soo-Seok;Lee, Dae-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1132-1137
    • /
    • 2002
  • In this paper, the test results of the combustion for 2 IAFR lean fuel models are described. The need for the low emission combustor has been issued from the concern on the increase of green house and the destruction of ozone layer. To evaluate the flow and combustion performance of newly designed 21AFR lean modules, the hydraulic tests in stereolithographic airflows models, the low pressure combustion tests in three injectors model for weak extinction and ignition and the high pressure combustion tests in single sector for NOx, SAE and efficiency are performed. The low pressure tests reveal that the governing parameters in weak extinction and ignition at atmospheric condition are prefilmer length, swirl flow rotation direction, secondary swirl angle and flow split. As a result of combustion test at high pressure, the efficiency and smoke level are satisfied with performance targets, but EINOx of 17.8 is higher than target value of 13.1 The high pressure tests show that the main parameters influenced on NOx are primary swirl angle, swirl flow rotation direction, heatshield exit angle and liner mixing hole location.

Stabilization of Abnormal Combustion of Dry Low NOx Gas Turbine Combustor for Power Generation (발전용 저 NOx 가스터빈의 연소 불안정 안정화에 관한 연구)

  • 정재모;안달홍;박정규
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.144-151
    • /
    • 2004
  • Stabilization and reduction of combustion noise and NOx emission from dry low NOx combustor of GE MS7001F gas turbine were achieved. Dry low NOx gas turbines that adopt the lean premixed combustion technology frequently generate the flame instability and high NOx emissions if not adequately tuned. Dynamic pressure oscillation during the combustion mode transfer increased as ambient temperature decreased with frequency of 80㎐ and magnitude of 4-9 psi. Effects of both combustor tuning for uniform fuel flow with burner nozzles and fuel pre-filling into transfer fuel valves on stabilisation of the dry low NOx combustor were very significant. Dynamic pressure oscillation during the combustion mode change was decreased up to 2.5 psi. Also, NOx emission from GE7F DLN-1 combustor can be maintained as low as 35-43ppm (15% O$_2$) in base load operation of 150 MW.

Development of Low NOx Combustor for 55kw Class Micro Gasturbine (55kW급 마이크로터빈용 저공해 연소기 개발)

  • Kim Hyung-Mo;Park Young-Il;Park Poo-Min;Yang Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.318-321
    • /
    • 2005
  • The design and performance test of a low NOx gas turbine combustor to be used in 55kW class micro-gasturbine engine was performed in KARI's combustion test facility. The combustor is reverse flow-can type for easy installation of injector and other parts and LNG is used as fuel. The performance targets are $99.5\%$ combustion efficiency, less 10ppm NOx, $30\%$ patten factor and $4\%$ pressure loss. Most of the performances required are satisfied.

  • PDF

The Catalytic Combustor for Gas Turbines (가스터빈 촉매연소기의 개발 현황)

  • Lee, Dong-Hun;Lee, Kang-Yeop;Choi, Seong-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.265-272
    • /
    • 2003
  • Some catalytic reactors for industrial/generation gas turbines were reviewed and investigated to understand the current status and future prospect for ultra low NOx catalytic gas turbine combustor. Catalytic reactor which was applied to 1${\sim}$10MW class gas turbine has achieved the ultra low emission corresponding to less than 3ppm NOx and 10ppm CO. But the durability and sizing flexibility of catalyst is needed to improve the catalyst performance for commercial gas turbine operation.

  • PDF

Eco-machinery Engineering Technology for Reducing NOx Emission (질소산화물과 관련한 환경기계기술)

  • Ahn, Kook-Young;Kim, Han-Seok;Cha, Min-Seok;Lee, Jin-Wook
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.301-310
    • /
    • 2003
  • Eco-Machinery engineering technologies in KIMM for reducing NOx emission were introduced. Combustion technologies such as reburning and fuel staged or air staged combustion have been applied to reduce NOx emission in the field of boiler furnaces. Lean premixed combustion method have been studied in gas turbine combustor. Hybrid system with plasma and SCR being considered as prospective method of De-NOx has been developed. Also, low NOx technologies including common rail system, EGR and DPF in diesel engine have been investigated.

  • PDF

A Study on Contaminant Emission and Combustion of Anthracite-Bituminous Coal Blend in a Fluidized Bed Coal Combustor (유동층 연소로에서 유$cdot$무연탄 혼합 연소시 대기오염물질 배출에 관한 연구)

  • 조상원;정종현;손병현;김영식;오광중
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.28-36
    • /
    • 1996
  • The objects of this study were to investigate emissions of air pollutant the particles as well as the combustibility of the low grade domestic anthracite coal and imported high-calorific bituminous coal in the fluidized bed coal combustor. The production of air pollution from anthracite-bituminous coal blend combustion in a fluidized bed coal combustor was evaluated. The effects of air velocity and anthracite fraction on the reaching time of steady state condition was also evaluated. We used coal samples the domestic low grade anthracite coal with heating value of 2,010 kcal/kg and the imported high grade bituminous coal with heating value of 6,520 kcal/kg. The experimental results are presented as follows. The time of reaching to steady state was affected by the temperature variation. The steady state time was about 120 minute at 0.3 m/s which was the fastest. It has been found that $O_2$ and $CO_2$ concentration were reached steady state at about 100 minute. As the height of fluidized bed becomes higher, the concentration s of $SO_2$ and $NO_x$ mainly increased. The concentration of freeboard was the highest and emission concentration was diminished. Also, as anthracite fraction increased, the emission of $SO_x$ concentration was increased. But, it has been found that the variation of $NO_x$ concentration with anthracite fraction was negligible and the difference of emission concentration according to air flow rates was negligible, too. It has been found that $O_2$ concentration decreased and $CO_2$ concentration increased as the height of fluidized bed increased. As anthracite fraction increased, the mass of elutriation particles increased, and $CO_2$ concentration decreased. Also, as air velocity increased, $O_2$ concentration decreased and $CO_2$ concentration increased. Regardless-of anthracite fraction and flow rate, the combustible weight percentage in elutriation particles were high in the case of fine particles.

  • PDF

The Low $NO_{x}$ Characteristics of a Lean Premixed Gas Turbine Combustor (희박연소를 이용한 가스터빈 연소기의 저 $NO_{x}$ 특성)

  • Son, M.G.;Ahn, K.Y.;Kim, H.S.;Kim, Y.M.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.66-70
    • /
    • 2001
  • The combustion characteristics have been investigated to develop the low $NO_{x}$ gas turbine combustor. The lean premixed combustion technology was applied to reduce the $NO_{x}$ emission. Also, the conventional combustor was designed and tested for the baseline of low $NO_{x}$ combustor performance. The test was conducted at the condition of high temperature and ambient pressure. The combustion air which has the temperature of 500K were supplied to the combustor through the air preheater. The temperature and emissions of $NO_{x}$ and CO were measured at the exit of combustor. The premixing chamber can be operated very lean condition of equivalence ratio around 0.35. The $NO_{x}$ was decreased with decreasing the equivalence ration. The CO was decreased with decreasing the equivalence ratio, but the CO was increased with decreasing the equivalence ratio below 0.45. But, at the very lean condition of equivalence ratio below 0.35 both NOx and CO were increased because of the flame unstability. The $NO_{x}$ was decreased slightly and CO was increased with increasing inlet air flowrate. This results can be used to determine the size of combustor. The low $NO_{x}$ combustor has lower values of $NO_{x}$ and CO compared with conventional one. Consequently the performance of combustor shows the possibility of the application to the gas turbine system.

  • PDF

The Low NOx Characteristics of the Primary Zone in Micro Turbine Combustor (마이크로 터빈 연소기 주연소영역의 저 NOx 생성 특성)

  • Son, M.G.;Ahn, K.Y.;Lee, H.S.;Yoon, J.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.155-160
    • /
    • 2001
  • The low NOx characteristics have been investigated to develop the combustor for micro turbine. The lean premixed combustion technology was applied to reduce the NOx emission. The test was conducted at the condition of high temperature and ambient pressure. The combustion air which has the temperature of $450\sim650K$ were supplied to the combustor through the air preheater. The temperature and emissions of NOx and CO were measured at the exit of combustor, The exit temperature and NOx were increased and CO was decreased with increasing inlet air temperature. The premixing chamber can be operated very lean condition of equivalence ratio around 0.35. The NOx was decreased with decreasing the equivalence ratio. The CO was decreased with decreasing the equivalence ratio, but the CO was increased with decreasing the equivalence ratio below 0.4. But, at the very lean condition of equivalence ratio below 0.35 both NOx and CO were increased because of the flame unstability. The NOx was decreased and CO was increased with increasing inlet air flowrate. This results can be used to determine the size of combustor. Consequently the performance of combustor shows the possibility of the application to the gas turbine system.

  • PDF

The Low-NOx Characteristics of Premixed Lean-Burn Gas Turbine Combustor (예혼합 희박연소 가스터빈 연소기의 저 NOx 특성)

  • Pae, H.S.;Ahn, K.Y.;Park, J.I.;Ahn, J.H.;Kim, Y.M.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.201-207
    • /
    • 1999
  • The combustion characteristics for the low NOx 50 kW-class gas turbine combustor have been experimentally investigated. In order to achieve the premixing and the lean burn combustion, the geometries of the primary zone including premixed chamber were modified from conventional combustor. The centerline profiles of CO and NO concentration, and temperature were measured for the premixed combustors with or without dilution holes in the liner. The effects of the pilot fuel injection rate and air dilution on flame stabilization and pollutant (CO, NO) emission are discussed in detail.

  • PDF

Effects of Combustor Stages on M501J Gas Turbine Combustion (M501J 가스터빈 연소기 단별 연료비율이 연소상태에 미치는 영향 고찰)

  • Yu, Won-Ju;Chung, Jin-Do
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.2
    • /
    • pp.1-8
    • /
    • 2019
  • Most of gas turbine combined cycle power plants are located in urban areas to provide peak load and district heating. However, NOx(nitrogen oxides) of exhaust gas emission from the power plants cause additional fine dust and thus it has negative impact on the urban environment. Although DLN(dry low NOx) and multi-stage combustors have been widely applied to solve this problem, they have another critical problem of damages to combustors and turbine components due to combustion dynamic pressure. In this study, the effect of different fuel ratio on NOx emission and pressure fluctuation was investigated regarding two variable conditions; combustor stages and power output on M501J gas turbine.