• Title/Summary/Keyword: Low emission

Search Result 2,583, Processing Time 0.023 seconds

Utility of Wide Beam Reconstruction in Whole Body Bone Scan (전신 뼈 검사에서 Wide Beam Reconstruction 기법의 유용성)

  • Kim, Jung-Yul;Kang, Chung-Koo;Park, Min-Soo;Park, Hoon-Hee;Lim, Han-Sang;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.83-89
    • /
    • 2010
  • Purpose: The Wide Beam Reconstruction (WBR) algorithms that UltraSPECT, Ltd. (U.S) has provides solutions which improved image resolution by eliminating the effect of the line spread function by collimator and suppression of the noise. It controls the resolution and noise level automatically and yields unsurpassed image quality. The aim of this study is WBR of whole body bone scan in usefulness of clinical application. Materials and Methods: The standard line source and single photon emission computed tomography (SPECT) reconstructed spatial resolution measurements were performed on an INFINA (GE, Milwaukee, WI) gamma camera, equipped with low energy high resolution (LEHR) collimators. The total counts of line source measurements with 200 kcps and 300 kcps. The SPECT phantoms analyzed spatial resolution by the changing matrix size. Also a clinical evaluation study was performed with forty three patients, referred for bone scans. First group altered scan speed with 20 and 30 cm/min and dosage of 740 MBq (20 mCi) of $^{99m}Tc$-HDP administered but second group altered dosage of $^{99m}Tc$-HDP with 740 and 1,110 MBq (20 mCi and 30 mCi) in same scan speed. The acquired data was reconstructed using the typical clinical protocol in use and the WBR protocol. The patient's information was removed and a blind reading was done on each reconstruction method. For each reading, a questionnaire was completed in which the reader was asked to evaluate, on a scale of 1-5 point. Results: The result of planar WBR data improved resolution more than 10%. The Full-Width at Half-Maximum (FWHM) of WBR data improved about 16% (Standard: 8.45, WBR: 7.09). SPECT WBR data improved resolution more than about 50% and evaluate FWHM of WBR data (Standard: 3.52, WBR: 1.65). A clinical evaluation study, there was no statistically significant difference between the two method, which includes improvement of the bone to soft tissue ratio and the image resolution (first group p=0.07, second group p=0.458). Conclusion: The WBR method allows to shorten the acquisition time of bone scans while simultaneously providing improved image quality and to reduce the dosage of radiopharmaceuticals reducing radiation dose. Therefore, the WBR method can be applied to a wide range of clinical applications to provide clinical values as well as image quality.

  • PDF

Difference in Chemical Composition of PM2.5 and Investigation of its Causing Factors between 2013 and 2015 in Air Pollution Intensive Monitoring Stations (대기오염집중측정소별 2013~2015년 사이의 PM2.5 화학적 특성 차이 및 유발인자 조사)

  • Yu, Geun Hye;Park, Seung Shik;Ghim, Young Sung;Shin, Hye Jung;Lim, Cheol Soo;Ban, Soo Jin;Yu, Jeong Ah;Kang, Hyun Jung;Seo, Young Kyo;Kang, Kyeong Sik;Jo, Mi Ra;Jung, Sun A;Lee, Min Hee;Hwang, Tae Kyung;Kang, Byung Chul;Kim, Hyo Sun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.16-37
    • /
    • 2018
  • In this study, difference in chemical composition of $PM_{2.5}$ observed between the year 2013 and 2015 at six air quality intensive monitoring stations (Bangryenogdo (BR), Seoul (SL), Daejeon (DJ), Gwangju (GJ), Ulsan (US), and Jeju (JJ)) was investigated and the possible factors causing their difference were also discussed. $PM_{2.5}$, organic and elemental carbon (OC and EC), and water-soluble ionic species concentrations were observed on a hourly basis in the six stations. The difference in chemical composition by regions was examined based on emissions of gaseous criteria pollutants (CO, $SO_2$, and $NO_2$), meteorological parameters (wind speed, temperature, and relative humidity), and origins and transport pathways of air masses. For the years 2013 and 2014, annual average $PM_{2.5}$ was in the order of SL ($${\sim_=}DJ$$)>GJ>BR>US>JJ, but the highest concentration in 2015 was found at DJ, following by GJ ($${\sim_=}SJ$$)>BR>US>JJ. Similar patterns were found in $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$. Lower $PM_{2.5}$ at SL than at DJ and GJ was resulted from low concentrations of secondary ionic species. Annual average concentrations of OC and EC by regions had no big difference among the years, but their patterns were distinct from the $PM_{2.5}$, $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$ concentrations by regions. 4-day air mass backward trajectory calculations indicated that in the event of daily average $PM_{2.5}$ exceeding the monthly average values, >70% of the air masses reaching the all stations were coming from northeastern Chinese polluted regions, indicating the long-range transportation (LTP) was an important contributor to $PM_{2.5}$ and its chemical composition at the stations. Lower concentrations of secondary ionic species and $PM_{2.5}$ at SL in 2015 than those at DJ and GJ sites were due to the decrease in impact by LTP from polluted Chinese regions, rather than the difference in local emissions of criteria gas pollutants ($SO_2$, $NO_2$, and $NH_3$) among the SL, DJ, and GJ sites. The difference in annual average $SO{_4}^{2-}$ by regions was resulted from combination of the difference in local $SO_2$ emissions and chemical conversion of $SO_2$ to $SO{_4}^{2-}$, and LTP from China. However, the $SO{_4}^{2-}$ at the sites were more influenced by LTP than the formation by chemical transformation of locally emitted $SO_2$. The $NO_3{^-}$ increase was closely associated with the increase in local emissions of nitrogen oxides at four urban sites except for the BR and JJ, as well as the LTP with a small contribution. Among the meterological parameters (wind speed, temperature, and relative humidity), the ambient temperature was most important factor to control the variation of $PM_{2.5}$ and its major chemical components concentrations. In other words, as the average temperature increases, the $PM_{2.5}$, OC, EC, and $NO_3{^-}$ concentrations showed a decreasing tendency, especially with a prominent feature in $NO_3{^-}$. Results from a case study that examined the $PM_{2.5}$ and its major chemical data observed between February 19 and March 2, 2014 at the all stations suggest that ambient $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations are not necessarily proportional to the concentrations of their precursor emissions because the rates at which they form and their gas/particle partitioning may be controlled by factors (e.g., long range transportation) other than the concentration of the precursor gases.

Assessment of Bone Metastasis using Nuclear Medicine Imaging in Breast Cancer : Comparison between PET/CT and Bone Scan (유방암 환자에서 골전이에 대한 핵의학적 평가)

  • Cho, Dae-Hyoun;Ahn, Byeong-Cheol;Kang, Sung-Min;Seo, Ji-Hyoung;Bae, Jin-Ho;Lee, Sang-Woo;Jeong, Jin-Hyang;Yoo, Jeong-Soo;Park, Ho-Young;Lee, Jae-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.1
    • /
    • pp.30-41
    • /
    • 2007
  • Purpose: Bone metastasis in breast cancer patients are usually assessed by conventional Tc-99m methylene diphosphonate whole-body bone scan, which has a high sensitivity but a poor specificity. However, positron emission tomography with $^{18}F-2-deoxyglucose$ (FDG-PET) can offer superior spatial resolution and improved specificity. FDG-PET/CT can offer more information to assess bone metastasis than PET alone, by giving a anatomical information of non-enhanced CT image. We attempted to evaluate the usefulness of FDG-PET/CT for detecting bone metastasis in breast cancer and to compare FDG-PET/CT results with bone scan findings. Materials and Methods: The study group comprised 157 women patients (range: $28{\sim}78$ years old, $mean{\pm}SD=49.5{\pm}8.5$) with biopsy-proven breast cancer who underwent bone scan and FDG-PET/CT within 1 week interval. The final diagnosis of bone metastasis was established by histopathological findings, radiological correlation, or clinical follow-up. Bone scan was acquired over 4 hours after administration of 740 MBq Tc-99m MDP. Bone scan image was interpreted as normal, low, intermediate or high probability for osseous metastasis. FDG PET/CT was performed after 6 hours fasting. 370 MBq F-18 FDG was administered intravenously 1 hour before imaging. PET data was obtained by 3D mode and CT data, used as transmission correction database, was acquired during shallow respiration. PET images were evaluated by visual interpretation, and quantification of FDG accumulation in bone lesion was performed by maximal SUV(SUVmax) and relative SUV(SUVrel). Results: Six patients(4.4%) showed metastatic bone lesions. Four(66.6%) of 6 patients with osseous metastasis was detected by bone scan and all 6 patients(100%) were detected by PET/CT. A total of 135 bone lesions found on either FDG-PET or bone scan were consist of 108 osseous metastatic lesion and 27 benign bone lesions. Osseous metastatic lesion had higher SUVmax and SUVrel compared to benign bone lesion($4.79{\pm}3.32$ vs $1.45{\pm}0.44$, p=0.000, $3.08{\pm}2.85$ vs $0.30{\pm}0.43$, p=0.000). Among 108 osseous metastatic lesions, 76 lesions showed as abnormal uptake on bone scan, and 76 lesions also showed as increased FDG uptake on PET/CT scan. There was good agreement between FDG uptake and abnormal bone scan finding (Kendall tau-b : 0.689, p=0.000). Lesion showed increased bone tracer uptake had higher SUVmax and SUVrel compared to lesion showed no abnormal bone scan finding ($6.03{\pm}3.12$ vs $1.09{\pm}1.49$, p=0.000, $4.76{\pm}3.31$ vs $1.29{\pm}0.92$, p=0.000). The order of frequency of osseous metastatic site was vertebra, pelvis, rib, skull, sternum, scapula, femur, clavicle, and humerus. Metastatic lesion on skull had highest SUVmax and metastatic lesion on rib had highest SUVrel. Osteosclerotic metastatic lesion had lowest SUVmax and SUVrel. Conclusion: These results suggest that FDG-PET/CT is more sensitive to detect breast cancer patients with osseous metastasis. CT scan must be reviewed cautiously skeleton with bone window, because osteosclerotic metastatic lesion did not showed abnormal FDG accumulation frequently.