• Title/Summary/Keyword: Low cell gap

Search Result 136, Processing Time 0.03 seconds

A Study on Electro-optical Characteristics in Three Kinds of Liquid Crystal Display Operating Mode

  • Moon, Hyun-Chan;Bae, Yu-Han;Hwang, Jeoung-Yeon;Seo, Oae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.2
    • /
    • pp.73-77
    • /
    • 2005
  • In this study, we investigated response characteristics of liquid crystal display (LCD) with different operating mode of nematic liquid crystals (NLCs) such as 45 $^{circ} twisted nematic (TN), 67.3 $^{circ} TN and electrical controlled birefringence (ECB) on the rubbed polyimide (PI) surface with side chains. The pretilt angles generated on polyimide surfaces of the three kinds of LCD operating modes were about 12 $^{circ} that was higher than those of conventional TN-LCOs. Also, the Electro-optical (EO) performance of these LCOs showed stable condition. Low transmittance of the 45 $^{circ} TN and 67.3 $^{circ} TN cell on the rubbed PI surface were measured by using low cell gap d. The fast response time in ECB cell among the three kinds of LCD operating modes was achieved. Also, thermal ability of fast 90 $^{circ} TN-LCD was investigated. The threshold voltage and the response time of thermal stressed TN-LCOs showed the same performances on no thermal stressed TN-LCOs. There was little change of value in these TN cells. However, the transmittances of TN-LCOs on the rubbed PI surface decreased while increasing thermal stress time. Therefore, the thermal stability of TN-LCD was decreased by the high thermal stress for the long duration.

Influence of Sputtering Conditions on Properties of Copper Oxide Thin Films (스퍼터링 공정 조건이 산화 구리 박막 특성에 미치는 영향)

  • Cho, Jae Yu;Heo, Jaeyeong
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.15-19
    • /
    • 2017
  • The fossil fuel power consumption generates $CO_2$, which causes the problems such as global warming. Also, the increase in energy consumption has accelerated the depletion of the fossil fuels, and renewable energy is attracting attention. Among the renewable energies, the solar energy gets a lot of attention as the infinite clean energy source. But, the supply level of solar cell is insignificant due to high cost of generation of electric power in comparison with fossil fuels. Thus several researchers are recently doing the research on ultra-low-cost solar cells. Also, $Cu_2O$ is one of the applied materials as an absorption layer in ultra-low-cost solar cells. Cuprous oxide ($Cu_2O$) is highly desirable semiconductor oxide for use in solar energy conversion due to its direct band gap ($E_g={\sim}2.1eV$) and a high absorption coefficient that absorbs visible light of wavelengths up to 650 nm. In addition, $Cu_2O$ has several advantages such as non-toxicity, low cost and can be prepared with simple and cheap methods on large scale. In this work, we fabricated the $Cu_2O$ thin films by reactive sputtering method. The films were deposited with a Cu target with variable parameters such as substrate temperature, rf-power, and annealing condition. Finally, we confirmed the structural properties of thin films by XRD and SEM.

Application of CBD Zinc Sulfide (ZnS) Film to Low Cost Antireflection Coating on Large Area Industrial Silicon Solar Cell

  • U. Gangopadhyay;Kim, Kyung-Hea;S.K. Dhungel;D. Mangalaraj;Park, J.H.;J. Yi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • Zinc sulfide is a semiconductor with wide band gap and high refractive index and hence promising material to be used as ARC on commercial silicon solar cells. Uniform deposition of zinc sulfide (ZnS) by using chemical bath deposition (CBD) method over a large area of silicon surface is an emerging field of research because ZnS film can be used as a low cost antireflection coating (ARC). The main problem of the CBD bath process is the huge amount of precipitation that occurs during heterogeneous reaction leading to hamper the rate of deposition as well as uniformity and chemical stoichiometry of deposited film. Molar concentration of thiorea plays an important role in varying the percentage of reflectance and refractive index of as-deposited CBD ZnS film. Desirable rate of film deposition (19.6 ${\AA}$ / min), film uniformity (Std. dev. < 1.8), high value of refractive index (2.35), low reflectance (0.655) have been achieved with proper optimization of ZnS bath. Decrease in refractive index of CBD ZnS film due to high temperature treatment in air ambiance has been pointed out in this paper. Solar cells of conversion efficiency 13.8 % have been successfully achieved with a large area (103 mm ${\times}$ 103 mm) mono-crystalline silicon wafers by using CBD ZnS antireflection coating in this modified approach.

Effect of carrier concentration of ITO films on Quantum Efficiency Window in Heterojunction Silicon Solar Cells

  • Kim, Hyunsung;Kim, Sangho;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.314-314
    • /
    • 2016
  • In this paper, the effects of carrier concentration on dielectric constant of ITO films were investigated by spectroscopic ellipsometry. From SE results, we find the pronounced shift of the ${\varepsilon}1$ peaks toward high energy with concentration; while contrarily, the ${\varepsilon}2$ values at low energy region increases with decreasing concentration. These shifts are attributed to the Burstein-Moss and free-carrier absorption effects within ITO films. With increases carrier concentration, the values of extinction coefficients show quite different behaviors in range of wavelength from 200 to 1200 nm. The reduction in k at ${\lambda}{\leq}500nm$, while increasing at ${\lambda}{\geq}500nm$ was observed. The QE of HJ solar cells behaviors can be roughly classified into two regions: short-wavelengths (${\leq}650nm$) and long-wavelengths region (${\geq}650nm$). With increasing carrier concentration as well as energy band gap, QE shows improvement at short-wavelength, while at long-wavelength QE shows opposite trend. Widening band gap energy due to Burstein-Moss shift is the key to improve QE in short-wavelength; simultaneously FCA effect due to optical scattering is attributed to the reduction in QE at long-wavelength. In spite of band gap extension, Jsc calculated from QE decreases from 34.7 mA/cm2 to 33.2 mA/cm2 with increasing carrier concentration. It demonstrated that FCA effect may more govern Jsc in the HJ solar cells.

  • PDF

Traffic control technologies without interruption for component replacement of long-span bridges using microsimulation and site-specific data

  • Zhou, Junyong;Shi, Xuefei;Zhang, Liwen;Sun, Zuo
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.169-178
    • /
    • 2019
  • The replacement of damaged components is an important task for long-span bridges. Conventional strategy for component replacement is to close the bridge to traffic, so that the influence of the surrounding environment is reduced to a minimum extent. However, complete traffic interruption would bring substantial economic losses and negative social influence nowadays. This paper investigates traffic control technologies without interruption for component replacement of long-span bridges. A numerical procedure of traffic control technologies is proposed incorporating traffic microsimulation and site-specific data, which is then implemented through a case study of cable replacement of a long-span cable-stayed bridge. Results indicate traffic load effects on the bridge are lower than the design values under current low daily traffic volume, and therefore cable replacement could be conducted without traffic control. However, considering a possible medium or high level of daily traffic volume, traffic load effects of girder bending moment and cable force nearest to the replaced cable become larger than the design level. This indicates a potential risk of failure, and traffic control should be implemented. Parametric studies show that speed control does not decrease but increase the load effects, and flow control using lane closure is not effectual. However, weight control and gap control are very effective to mitigate traffic load effects, and it is recommended to employ a weight control with gross vehicle weight no more than 65 t or/and a gap control with minimum vehicle gap no less than 40 m for the cable replacement of the case bridge.

Unified Design Methodology and Verification Platform for Giga-scale System on Chip (기가 스케일 SoC를 위한 통합 설계 방법론 및 검증 플랫폼)

  • Kim, Jeong-Hun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.106-114
    • /
    • 2010
  • We proposed an unified design methodology and verification platform for giga-scale System on Chip (SoC). According to the growth of VLSI integration, the existing RTL design methodology has a limitation of a production gap because a design complexity increases. A verification methodology need an evolution to overcome a verification gap. The proposed platform includes a high level synthesis, and we develop a power-aware verification platform for low power design and verification automation using it's results. We developed a verification automation and power-aware verification methodology based on control and data flow graph (CDFG) and an abstract level language and RTL. The verification platform includes self-checking and the coverage driven verification methodology. Especially, the number of the random vector decreases minimum 5.75 times with the constrained random vector algorithm which is developed for the power-aware verification. This platform can verify a low power design with a general logic simulator using a power and power cell modeling method. This unified design and verification platform allow automatically to verify, design and synthesis the giga-scale design from the system level to RTL level in the whole design flow.

Influence of Process Conditions on Properties of Cu2O Thin Films Grown by Electrodeposition (전착법을 이용한 Cu2O 박막 형성 및 공정 조건에 따른 특성 변화)

  • Cho, Jae Yu;Ha, Jun Seok;Ryu, Sang-Wan;Heo, Jaeyeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.37-41
    • /
    • 2017
  • Cuprous oxide ($Cu_2O$) is one of the potential candidates as an absorber layer in ultra-low-cost solar cells. $Cu_2O$ is highly desirable semiconducting oxide material for use in solar energy conversion due to its direct band gap ($E_g={\sim}2.1eV$) and high absorption coefficient that absorbs visible light of wavelength up to 650 nm. In addition, $Cu_2O$ has other several advantages such as non-toxicity, low cost and also can be prepared with simple and cheap methods on large scale. In this work, we deposited the $Cu_2O$ thin films by electrodeposition on gold coated $SiO_2/Si$ wafers. We changed the process conditions such as pH of the solution, applied potential on working electrode, and solution temperature. Finally, we confirmed the structural properties of the thin films by XRD and SEM.

Distributed BS Transmit Power Control for Utility Maximization in Small-Cell Networks (소형 셀 환경에서 유틸리티 최대화를 위한 분산화된 방법의 기지국 전송 전력 제어)

  • Lee, Changsik;Kim, Jihwan;Kwak, Jeongho;Kim, Eunkyung;Chong, Song
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.12
    • /
    • pp.1125-1134
    • /
    • 2013
  • Small cells such as pico or femto cells are promising as a solution to cope with higher traffic explosion and the large number of users. However, the users within small cells are likely to suffer severe inter-cell interference (ICI) from neighboring base stations (BSs). To tackle this, several papers suggest BS transmit power on/off control algorithms which increase edge user throughput. However, these algorithms require centralized coordinator and have high computational complexity. This paper makes a contribution towards presenting fully distributed and low complex joint BS on/off control and user scheduling algorithm (FDA) by selecting on/off pattern of BSs. Throughput the extensive simulations, we verify the performance of our algorithm as follows: (i) Our FDA provides better throughput performance of cell edge users by 170% than the algorithm without the ICI management. (ii) Our FDA catches up with the performance of optimal algorithm by 88-96% in geometric average throughput and sufficiently small gap in edge user throughput.

Development and Applications of Material Testers for the Thin Films (박막 재료 시험기 개발 및 응용)

  • Ahn Hyun-Gyun;Lee Hak-Joo;Oh Chung-Seog
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.163-170
    • /
    • 2006
  • Thin films play an important role in many technological applications including microelectronic devices, magnetic storage media, MEMS and surface coatings. It is well known that a thin film's material properties can be very different front the corresponding bulk properties and thus there has been a strong need for the development of a miniature tester to measure the mechanical properties of a thin film. Two testers are designed and set up in small size of 62 mm width, 20 mm depth and 90-120 mm height to fit in a chamber of scanning electron microscope (SEM). One tester has a homemade 0.2 N load cell and a low-priced electromagnetic actuator. The other has a commercial 5 N load cell, a $52{\mu}m$ piezoelectric actuator and some novel grips. Two types of 3.5 microns thick polysilicon specimen are tested to prove the testers' applicability. The strain is measured by the two ways. Firstly, it is measured by an ISDG system in the atmosphere far the reference. Secondly, the same test is repeated in a SEM chamber to monitor the strain as an in-situ experiment. The strain is evaluated by observing the gap change between two markers.

Preperation of CuInSe2 Nanoparticles by Solution Process Using Precyrsors

  • Choe, Ha-Na;Lee, Seon-Suk;Jeong, Taek-Mo;Kim, Chang-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.376-376
    • /
    • 2011
  • I-III-VI2 chalcopyrite compounds, particularly copper, indium, gallium selenide(Cu(InxGa1-x)Se2, CIGS), are effective light-absorbing materials in thin-film solar application. They are direct band-gap semiconductors with correspondingly high optical absorption coefficients. Also they are stable under long-term excitation. CIS (CIGS) solar cell reached conversion efficiencies as high as 19.5%. Several methods to prepare CIS (CIGS) absorber films have been reported, such as co-evaporation, sputtering, selenization, and electrodeposition. Until now, co-evaporation is the most successful technique for the preparation of CIS (CIGS) in terms of solar efficiency, but it seems difficult to scale up. CIS solar cells have been hindered by high costs associated with a fabrication process. Therefore, inorganic colloidal ink suitable for a scalable coating process could be a key step in the development of low-cost solar cells. Here, we will present the preparation of CIS photo absorption layer by a solution process using novel metal precursors. Chalcopyrite copper indium diselenide (CuInSe2) nanocrystals ranging from 5 to 20nm in diameter were synthesized by arrested precipitation in solution. For the fabrication of CIS photo absorption layer, the CuInSe2 colloidal ink was prepared by dispersing in organic solvent and used to drop-casting on molybdenum substrate. We have characterized the nanoparticless and CIS layer by XRD, SEM, TEM, and ICP.

  • PDF