• 제목/요약/키워드: Low cell gap

검색결과 136건 처리시간 0.033초

등온가열 수평원관내 융해과정동안의 열적 불안정성 (Thermal instability during the melting process in an isothermally heated horizontal cylinder)

  • 정재동;유호선;이준식
    • 대한기계학회논문집B
    • /
    • 제20권6호
    • /
    • pp.2046-2056
    • /
    • 1996
  • The constrained melting inside an isothermally heated horizontal cylinder has been repeatedly investigated in many studies only for the moderate Rayleigh numbers. This study extends the range of Rayleigh numbers to systematically investigate the transition during melting processes, especially focusing on the complex multi-cellular flow pattern and thermal instability. The enthalpy-porosity formulation, with appropriate source terms to account for the phase change, is employed. For low Rayleigh numbers, initially developed single-cell base flow keeps the flow stable. For moderate Rayleigh numbers, even small disturbances in balance between thermal buoyance force and viscous force result in branched flow structure. For high Rayleight numbers, Benard type convection is found to develop within a narrow gap between thee wall and the unmelted solid. The marginal Rayleigh number and the corresponding wave number are in excellent agreement with those from linear stability theory.

Monoterpenoids Concentration during Decomposition and Their Effect on Polysphondylium violaceum

  • Kim, Jong-Hee;Hwang, Ji-Young;Jo, Gyu-Gap;Kang, Ho-Nam
    • Journal of Ecology and Environment
    • /
    • 제29권4호
    • /
    • pp.337-342
    • /
    • 2006
  • The total monoterpenoid content of the pine litter layer and the availability of these compounds as inhibitors/stimulators on Polysphondylium violaceum of cellular slime molds were investigated. In order to determine the several monoterpenoids in the natural environment, we examined their concentrations in fresh, senescent, and decaying needles from 3 pine species (Pinus densiflora, P. thunbergii, P. rigida) by litter bag method. Total monoterpenoid content was highest in the fresh needles, but also remained relatively high in senescent needles. The effect of monoterpenoids identified from Pinus plants on the growth of P. violaceum was studied. We tested four concentrations (1, 0.1, 0.01, and $0.001\;{\mu}g/{\mu}L$) of each compound by using a disk volatilization technique. Each compound was treated after germination of spores of P. violaceum. All of the compounds at $1\;{\mu}g/{\mu}L$ concentration had a very strong inhibitory effect on cell growth of P. violaceum. Fenchone at all concentrations, myrcene, verbenone, bornyl acetate, and limonene at low concentrations stimulated the growth of P. violaceum. These results suggest that inhibitory or enhancing effects of selected monoterpenoids depend upon the concentration of the individual compound.

TCO 응용을 위한 패턴된 기판위에 증착된 AZO 박막의 특성 연구 (Conformal coating of Al-doped ZnO thin film on micro-column patterned substrate for TCO)

  • 최미경;안철현;공보현;조형균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.28-28
    • /
    • 2009
  • Fabrications of antireflection structures on solar cell were investigated to trap the light and to improve quantum efficiency. Introductions of patterned substrate or textured layer for Si solar cell were performed to prevent reflectance and to increase the path length of incoming light. However, it is difficult to deposit conformally flat electrode on perpendicular plane. ZnO is II-VI compound semiconductor and well-known wide band-gap material. It has similar electrical and optical properties as ITO, but it is nontoxic and stable. In this study, Al-doped ZnO thin films are deposited as transparent electrode by atomic layer deposition method to coat on Si substrate with micro-scale structures. The deposited AZO layer is flatted on horizontal plane as well as perpendicular one with conformal 200 nm thickness. The carrier concentration, mobility and resistivity of deposited AZO thin film on glass substrate were measured $1.4\times10^{20}cm^{-3}$, $93.3cm^2/Vs$, $4.732\times10^{-4}{\Omega}cm$ with high transmittance over 80%. The AZO films were coated with polyimide and performed selective polyimide stripping on head of column by reactive ion etching to measure resistance along columns surface. Current between the micro-columns flows onto the perpendicular plane of deposited AZO film with low resistance.

  • PDF

급속열처리 분위기에 따른 화합물 태양전지용 CdS 박막의 특성변화 (Characterization of CdS Thin Films for Compound Photovoltaic Applications by Atmospheres of Rapid Thermal Process)

  • 박승범;권순일;이석진;정태환;양계준;임동건;박재환;송우창
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.105-106
    • /
    • 2008
  • Structural, optical and electrical properties of CdS films deposited by chemical bath deposition (CBD), which are a very attractive method for low-cost and large-area solar cells, are presented. Cadmium sulfide (CdS) is II-VI semiconductor with a wide band gap of approximately 2.42 eV. CdS films have a great application potential such as solar cell, optical detector and optoelectronics device. In this paper, effects of Rapid Thermal Process (RTP) on the properties of CdS films were investigated. The CdS films were prepared on a glass by chemical bath deposition (CBD) and subsequently annealed at standard temperature $(400^{\circ}C)$ and treatment time (10 min) in various atmospheres (air, vacuum and $N_2$). The CdS films treated RTP in $N_2$ for to min were showed larger grain size and higher carrier density than the other samples.

  • PDF

High Performance Flexible Inorganic Electronic Systems

  • 박귀일;이건재
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.115-116
    • /
    • 2012
  • The demand for flexible electronic systems such as wearable computers, E-paper, and flexible displays has increased due to their advantages of excellent portability, conformal contact with curved surfaces, light weight, and human friendly interfaces over present rigid electronic systems. This seminar introduces three recent progresses that can extend the application of high performance flexible inorganic electronics. The first part of this seminar will introduce a RRAM with a one transistor-one memristor (1T-1M) arrays on flexible substrates. Flexible memory is an essential part of electronics for data processing, storage, and radio frequency (RF) communication and thus a key element to realize such flexible electronic systems. Although several emerging memory technologies, including resistive switching memory, have been proposed, the cell-to-cell interference issue has to be overcome for flexible and high performance nonvolatile memory applications. The cell-to-cell interference between neighbouring memory cells occurs due to leakage current paths through adjacent low resistance state cells and induces not only unnecessary power consumption but also a misreading problem, a fatal obstacle in memory operation. To fabricate a fully functional flexible memory and prevent these unwanted effects, we integrated high performance flexible single crystal silicon transistors with an amorphous titanium oxide (a-TiO2) based memristor to control the logic state of memory. The $8{\times}8$ NOR type 1T-1M RRAM demonstrated the first random access memory operation on flexible substrates by controlling each memory unit cell independently. The second part of the seminar will discuss the flexible GaN LED on LCP substrates for implantable biosensor. Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as the future flexible display technology and a type of implantable LED biosensor for a therapy tool. The final part of this seminar will introduce a highly efficient and printable BaTiO3 thin film nanogenerator on plastic substrates. Energy harvesting technologies converting external biomechanical energy sources (such as heart beat, blood flow, muscle stretching and animal movements) into electrical energy is recently a highly demanding issue in the materials science community. Herein, we describe procedure suitable for generating and printing a lead-free microstructured BaTiO3 thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible BaTiO3 thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of BaTiO3 thin film nanogenerator.

  • PDF

염료감응형 광전기화학 물분해 전지용 Tri-branched tri-anchoring organic dye 개발 (Tri-branched tri-anchoring organic dye for Visible light-responsive dye-sensitized photoelectrochemical water-splitting cells)

  • 박정현;김재홍;안광순
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.87-87
    • /
    • 2010
  • Photoelectrochemical (PEC) systems are promising methods of producing H2 gas using solar energy in an aqueous solution. The photoelectrochemical properties of numerous metal oxides have been studied. Among them, the PEC systems based on TiO2 have been extensively studied. However, the drawback of a PEC system with TiO2 is that only ultraviolet (UV) light can be absorbed because of its large band gap (3.2 - 3.4 eV). Two approaches have been introduced in order to use PEC cells in the visible light region. The first method includes doping impurities, such as nitrogen, into TiO2, and this technique has been extensively studied in an attempt to narrow the band gap. In comparison, research on the second method, which includes visible light water splitting in molecular photosystems, has been slow. Mallouk et al. recently developed electrochemical water-splitting cells using the Ru(II) complex as the visible light photosensitizer. the dye-sensitized PEC cell consisted of a dye-sensitized TiO2 layer, a Pt counter electrode, and an aqueous solution between them. Under a visible light (< 3 eV) illumination, only the dye molecule absorbed the light and became excited because TiO2 had the wide band gap. The light absorption of the dye was followed by the transfer of an electron from the excited state (S*) of the dye to the conduction band (CB) of TiO2 and its subsequent transfer to the transparent conducting oxide (TCO). The electrons moved through the wire to the Pt, where the water reduction (or H2 evolution) occurred. The oxidized dye molecules caused the water oxidation because their HOMO level was below the H2O/O2 level. Organic dyes have been developed as metal-free alternatives to the Ru(II) complexes because of their tunable optical and electronic properties and low-cost manufacturing. Recently, organic dye molecules containing multi-branched, multi-anchoring groups have received a great deal of interest. In this work, tri-branched tri-anchoring organic dyes (Dye 2) were designed and applied to visible light water-splitting cells based on dye-sensitized TiO2 electrodes. Dye 2 had a molecular structure containing one donor (D) and three acceptor (A) groups, and each ended with an anchoring functionality. In comparison, mono-anchoring dyes (Dye 1) were also synthesized. The PEC response of the Dye 2-sensitized TiO2 film was much better than the Dye 1-sensitized or unsensitized TiO2 films.

  • PDF

우리나라의 중점녹색기술수준 조사.분석 및 시사점 (The Survey and Analysis of Technology Level on Korea's Key Green Technologies and its Implications)

  • 홍미영;황기하;홍정석;이경재
    • 기술혁신학회지
    • /
    • 제16권2호
    • /
    • pp.476-505
    • /
    • 2013
  • 우리나라 정부는 '저탄소 녹색성장'을 새로운 국가발전 패러다임으로 제시한 이래로 '녹색기술 연구개발 종합대책('09.1)'을 통해 27대 중점 녹색기술을 도출하는 등 녹색성장의 중심으로 녹색기술 개발 전략을 수립 추진해 왔다. 본 연구에서는 대규모 녹색기술 전문가 집단이 참여하여 델파이 조사 기법을 활용한 27대 중점 녹색기술 내 총 131개의 전략제품 서비스 기술을 대상으로 기술수준 조사를 실시하였다. 2011년 기준으로 중점 녹색기술 전체에 대한 주요 5개국의 기술수준은 세계최고기술보유국(미국) 대비 EU(99.4%), 일본(95.3%), 한국(77.7%), 중국(67.1%) 순이며, 한국은 5개국 중 4위를 차지하였다. 세계최고기술보유국(미국)과 한국과의 기술격차년수는 4.1년으로 EU(3.9년), 일본(3.1년)에는 뒤져 있는 반면, 중국에는 2.1년 앞선 것으로 조사되었다. 우리나라의 기술수준이 가장 높은 중점 녹색기술은 '개량형 경수로 설계 및 건설기술(90.1%)'이며, 이어서 '실리콘계 태양전지의 고효율 저가화 기술(85.0%)', '고효율 저공해 차량기술(84.5%)' 순으로 나타났다. 중점 녹색기술의 투자유형에 따른 기술수준은 단기(85.0%), 중기(77.3%), 장기(71.1%) 집중형 순이며, 기술수준이 낮을수록 중장기적인 투자를 요하는 것으로 나타나 전반적인 투자유형 설정은 적절한 것으로 조사되었다.

  • PDF

Changes in Expression of Connexin Isoforms in the Caudal Epididymis of Adult Sprague-Dawley Rats exposed to Estradiol Benzoate or Flutamide at the Neonatal Age

  • Lee, Ki-Ho
    • 한국발생생물학회지:발생과생식
    • /
    • 제20권3호
    • /
    • pp.237-245
    • /
    • 2016
  • Direct communication between neighboring cells via gap junction in tissue is important for maintenance and regulation of its physiological functions. Each epididymal region has different composition of cell types. It is well recognized that the epididymis is a steroid hormone-responsive tissue. The present study was designed to determine the effect of estradiol benzoate (EB) or flutamide exposured at the early postnatal age on the expression of connexin (Cx) isoforms in the caudal epididymis. The EB or flutamide was subcutaneously administrated to male Spragure Dawley rat at 7 days of age, and expressional changes of Cx isoforms in the adult corpus epididymis were determined by quantitative real-time PCR. The treatment of low-dose EB resulted in decreases of Cx30.3, Cx31.1, Cx37, and Cx45 expression but caused an increase of Cx32 expression. Exposure to high-dose EB led into expressional increases of Cx31, Cx31.1, Cx32, Cx40, and Cx43, even though a decrease of Cx37 expression was found with a high-dose EB treatment. A low-dose flutamide induced increases of Cx31, Cx31.1, Cx32, and Cx43 expression but a decrease of Cx37 expression. Expression of most Cx genes were significantly increased by a high-dose flutamide, while no expressional change of Cx26 and Cx40 was detected by a high-dose flutamide. These results indicate that expression of Cx isoforms in the caudal epididymis is altered by exposure to steroidal compounds at the prepubertal age. It is suggested that a contact with environmental exogenous materials during the early postnatal period would lead to alteration of epididymal functions at the adult.

A Dielectrophoresis Microfluidic Device for Trapping Bioparticles at Low Voltage and Frequency

  • Jeong, Jin-Tae;Shin, Hyun-Min;Kim, Duwoon;Lee, Kyeong-Hwan
    • Journal of Biosystems Engineering
    • /
    • 제41권1호
    • /
    • pp.60-65
    • /
    • 2016
  • Purpose: The necessity for precise manipulation of bioparticles has greatly increased in the fields of bioscience, biomedical, and environmental monitoring. Dielectrophoresis (DEP) is considered to be an ideal technique to manipulate bioparticles. The objective of this study is to develop a DEP microfluidic device that can trap fluorescent beads, which mimic bioparticles, at the low voltage and frequency of the sinusoidal signal supplied to the microfluidic device. Methods: A DEP microfluidic device, which is composed of polydimethylsiloxane (PDMS) channels and interdigitated electrode networks, is fabricated to trap fluorescent beads. The geometry of the interdigitated electrodes is determined through computational simulation. To determine the optimum voltage and frequency of the sinusoidal signal supplied to the device, the experiments of trapping beads are conducted at various combinations of voltage and frequency. The performance of the DEP microfluidic device is evaluated by investigating the correlation between fluorescent intensities and bead concentrations. Results: The optimum ratio of the widths between the negative and positive electrodes was 1:4 ($20:80{\mu}m$) at a gap of $20{\mu}m$ between the two electrodes. The DEP electrode networks were fabricated based on this geometry and used for the bead trapping experiments. The optimum voltage and frequency of the supplied signal for trapping fluorescent beads were 15 V and 5 kHz, respectively. The fluorescent intensity of the trapped beads increased linearly as the bead concentration increased. The coefficient of determination ($R^2$) between the fluorescent intensity and the bead concentration was 0.989. Conclusions: It is concluded that the microfluidic device developed in this study is promising for trapping bioparticles, such as a cell or virus, if they are conjugated to beads, and their concentration is quantified.

Stem Cells and Cell-Cell Communication in the Understanding of the Role of Diet and Nutrients in Human Diseases

  • Trosko James E.
    • 한국식품위생안전성학회지
    • /
    • 제22권1호
    • /
    • pp.1-14
    • /
    • 2007
  • The term, "food safety", has traditionally been viewed as a practical science aimed at assuring the prevention acute illnesses caused by biological microorganisms, and only to a minor extent, chronic diseases cause by chronic low level exposures to natural and synthetic chemicals or pollutants. "food safety" meant to prevent microbiological agents/toxins in/on foods, due to contamination any where from "farm to Fork", from causing acute health effects, especially to the young, immune-compromised, genetically-predisposed and elderly. However, today a broader view must also include the fact that diet, perse (nutrients, vitamins/minerals, calories), as well as low level toxins and pollutant or supplemented synthetic chemicals, can alter gene expressions of stem/progenitor/terminally-differentiated cells, leading to chronic inflammation and other mal-functions that could lead to diseases such as cancer, diabetes, atherogenesis and possibly reproductive and neurological disorders. Understanding of the mechanisms by which natural or synthetic chemical toxins/toxicants, in/on food, interact with the pathogenesis of acute and chronic diseases, should lead to a "systems" approach to "food safety". Clearly, the interactions of diet/food with the genetic background, gender, and developmental state of the individual, together with (a) interactions of other endogenous/exogenous chemicals/drugs; (b) the specific biology of the cells being affected; (c) the mechanisms by which the presence or absence of toxins/toxicants and nutrients work to cause toxicities; and (d) how those mechanisms affect the pathogenesis of acute and/or chronic diseases, must be integrated into a "system" approach. Mechanisms of how toxins/toxicants cause cellular toxicities, such as mutagenesis; cytotoxicity and altered gene expression, must take into account (a) irreversible or reversal changes caused by these toxins or toxicants; (b)concepts of thresholds or no-thresholds of action; and (c) concepts of differential effects on stem cells, progenitor cells and terminally differentiated cells in different organs. This brief Commentary tries to illustrate this complex interaction between what is on/in foods with one disease, namely cancer. Since the understanding of cancer, while still incomplete, can shed light on the multiple ways that toxins/toxicants, as well as dietary modulation of nutrients/vitamins/metals/ calories, can either enhance or reduce the risk to cancer. In particular, diets that alter the embryo-fetal micro-environment might dramatically alter disease formation later in life. In effect "food safety" can not be assessed without understanding how food could be 'toxic', or how that mechanism of toxicity interacts with the pathogenesis of any disease.