• 제목/요약/키워드: Low carbon energy

검색결과 1,099건 처리시간 0.031초

Effects of Increasing Ambient Temperatures on the Static Load Performance and Surface Coating of a Gas Foil Thrust Bearing (외기 온도 증가가 가스 포일 스러스트 베어링의 하중지지 성능과 표면 코팅에 미치는 영향)

  • Hyunwoo Cho;Youngwoo Kim;Yongbum Kwon;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • 제40권3호
    • /
    • pp.103-110
    • /
    • 2024
  • Gas foil thrust bearings (GFTBs) are oil-free self-acting hydrodynamic bearings that support axial loads with a low friction during airborne operation. They need solid lubricants to reduce dry-friction between the runner and top foil and minimize local wears on their surfaces during start-up and shutdown processes. In this study, we evaluate the lift-off speeds and load capacity performance of a GFTB with Polytetrafluoroethylene (PTFE) surface coating by measuring drag torques during a series of experimental tests at increasing ambient temperatures of 25, 75 and 110℃. An electric heat gun provides hot air to the test GFTB operating in the closed booth to increase the ambient temperature. Test results show that the increasing ambient temperature delays the lift-off speed and decreases the load capacity of the test GFTB. An early developed prediction tool well predicts the measured drag torques at 60 krpm. After all tests, post inspections of the surface coating of the top foil are conducted. Scanning electron microscope (SEM) images imply that abrasive wear and oxidation wear are dominant during the tests at 25℃ and 110℃, respectively. A quantitative energy dispersive spectroscopy (EDS) microanalysis reveals that the weight percentages of carbon, oxygen, and nitrogen decrease, while that of fluorine increases significantly during the highest-temperature tests. The study demonstrates that the increasing ambient temperature noticeably deteriorates the static performances and degrades the surface coating of the test GFTB.

Prospects of omics-driven synthetic biology for sustainable agriculture

  • Soyoung Park;Sung-Dug Oh;Vimalraj Mani;Jin A Kim;Kihun Ha;Soo-Kwon Park;Kijong Lee
    • Korean Journal of Agricultural Science
    • /
    • 제49권4호
    • /
    • pp.801-812
    • /
    • 2022
  • Omics-driven synthetic biology is a multidisciplinary research field that creates new artificial life by employing genetic components, biological devices, and engineering technique based on genetic knowledge and technological expertise. It is also utilized to make valuable biomaterials with limited production via current organisms faster, more efficient, and in huge quantities. As the bioeconomic age begins, and the global synthetic biology market becomes more competitive, investment in research and development (R&D) and associated sectors has grown considerably. By overcoming the constraints of present biotechnologies through the merging of big data and artificial intelligence technologies, huge ripple effects are envisaged in the pharmaceutical, chemical, and energy industries. In agriculture, synthetic biology is being used to solve current agricultural problems and develop sustainable agricultural systems by increasing crop productivity, implementing low-carbon agriculture, and developing plant-based, high-value-added bio-materials such as vaccines for diagnosing and preventing livestock diseases. As international regulatory debates on synthetic biology are now underway, discussions should also take place in our country for the growth of bioindustries and the dissemination of research findings. Furthermore, the system must be improved to facilitate practical application and to enhance the risk evaluation technology and management system.

Effects of Seeding Microorganisms, Hydrazine, and Nitrite Concentration on the Anammox Activity (혐기성 암모늄 산화균의 활성에 대한 식종미생물, 히드라진 및 아질산성 질소 농도의 영향)

  • Jung, Jin-Young;Kang, Shin-Hyun;Kim, Young-O;Chung, Yun-Chul
    • Journal of Korean Society on Water Environment
    • /
    • 제21권5호
    • /
    • pp.477-483
    • /
    • 2005
  • Anammox (Anaerobic Ammonium Oxidation) bacteria is recently discovered microorganism which can oxidize ammonium to nitrogen gas in the presence of nitrite under anaerobic conditions. The anammox process can save an energy for nitrification and need not require a carbon source for denitrification, however, the start-up periods takes a long time more than several months due to the long doubling time (approximately 11 days). In order to find the effects of seeding microorganisms, hydrazine, and nitrite concentration on the enhancement of the anammox activity, five kinds of microorganisms were selected. Among the several kinds of seeding microorganisms, the granule from acclimated microorganisms treating high concentration of ammonia nitrogen (A-1) and sludge from piggery wastewater treatment plant (A-2) were found to have a high anammox activity. In the case of A-1, the maximum nitrogen conversion rate represented 0.4 mg N/L-hr, and the amount of nitrite utilization was high compared to those of other seeding microorganisms. The A-4 represented a higher nitrogen conversion rate to 0.7 mg N/L-hr although the ammonium concentration in the serum bottle was high as 200 mg/L. Meanwhile, the anaerobic granule from UASB reactor treating distillery wastewater showed a low anammox activity due to the denitrification by the remained carbon sources in the granule. Hydrazine, intermediate product in anammox reaction, enhanced the anammox activity by representing 1.4 times of nitrogen gas was produced in the test bottle than that of control, when 0.4 mM of $N_2H_4$ was added to serum bottle which contains 5 mM of nitrite. The high concentration of nitrite (10 mM) resulted in the decrease of the anammox activity by showing lower production of nitrogen gas compared to that of 5 mM addition of nitrite concentration. As a result of FISH (Florescence In-Situ Hybridization) experiment, the Amx820 probe showed a more than 13% of anammox bacteria in a granule (A-1).

Dependance of Ionic Polarity in Semiconductor Junction Interface (반도체 접합계면이 가스이온화에 따라 극성이 달라지는 원인)

  • Oh, Teresa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제19권6호
    • /
    • pp.709-714
    • /
    • 2018
  • This study researched the reasons for changing polarity in accordance with junction properties in an interface of semiconductors. The contact properties of semiconductors are related to the effect of the semiconductor's device. Therefore, it is an important factor for understanding the junction characteristics in the semiconductor to increase the efficiency of devices. For generation of various junction properties, carbon-doped silicon oxide (SiOC) was deposited with various argon (Ar) gas flow rates, and the characteristics of the SiOC was varied based on the polarity in accordance with the Ar gas flows. Tin-doped zinc oxide (ZTO) as the conductor was deposited on the SiOC as an insulator to research the conductivity. The properties of the SiOC were determined from the formation of a depletion layer by the ionization reaction with various Ar gas flow rates due to the plasma energy. Schottky contact was good in the condition of the depletion layer, with a high potential barrier between the silicon (Si) wafer and the SiOC. The rate of ionization reactions increased when increasing the Ar gas flow rate, and then the potential barrier of the depletion layer was also increased owing to deficient ions from electron-hole recombination at the junction. The dielectric properties of the depletion layer changed to the properties of an insulator, which is favorable for Schottky contact. When the ZTO was deposited on the SiOC with Schottky contact, the stability of the ZTO was improved by the ionic recombination at the interface between the SiOC and the ZTO. The conductivity of ZTO/SiOC was also increased on SiOC film with ideal Schottky contact, in spite of the decreasing charge carriers. It increases the demand on the Schottky contact to improve the thin semiconductor device, and this study confirmed a high-performance device owing to Schottky contact in a low current system. Finally, the amount of current increased in the device owing to ideal Schottky contact.

Municipal Wastewater Treatment and Microbial Diversity Analysis of Microalgal Mini Raceway Open Pond (미세조류 옥외 배양시스템을 이용한 도시하수 정화 및 미생물 군집다양성 분석)

  • Kang, Zion;Kim, Byung-Hyuk;Shin, Sang-Yoon;Oh, Hee-Mock;Kim, Hee-Sik
    • Korean Journal of Microbiology
    • /
    • 제48권3호
    • /
    • pp.192-199
    • /
    • 2012
  • Microalgal biotechnology has gained prominence because of the ability of microalgae to produce value-added products including biodiesel through photosynthesis. However, carbon and nutrient source is often a limiting factor for microalgal growth leading to higher input costs for sufficient biomass production. Use of municipal wastewater as a low cost alternative to grow microalgae as well as to treat the same has been demonstrated in this study using mini raceway open ponds. Municipal wastewater was collected after primary treatment and microalgae indigenous in the wastewater were encouraged to grow in open raceways under optimum conditions. The mean removal efficiencies of TN, TP, COD-$_{Mn}$, $NH_3$-N after 6 days of retention time was 80.18%, 63.56%, 76.34%, and 96.74% respectively. The 18S rRNA gene analysis of the community revealed the presence of Chlorella vulgaris and Scenedesmus obliquus as the dominant microalgae. In addition, 16S rRNA gene analysis demonstrated that Rhodobacter, Luteimonas, Porphyrobacter, Agrobacterium, and Thauera were present along with the microalgae. From these results, it is concluded that microalgae could be used to effectively treat municipal wastewater without aerobic treatment, which incurs additional energy costs. In addition, municipal wastewater shall also serve as an excellent carbon and nitrogen source for microalgal growth. Moreover, the microalgal biomass shall be utilized for commercial purposes.

Preparation of Heated Tobacco Biomass-derived Carbon Material for Supercapacitor Application (궐련형 담배 바이오매스 기반의 슈퍼커패시터용 탄소의 제조 및 응용)

  • Kim, Jiwon;Jekal, Suk;Kim, Dong Hyun;Yoon, Chang-Min
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • 제30권2호
    • /
    • pp.5-15
    • /
    • 2022
  • In this study, heated tobacco biomass was prepared as an active material for supercapacitor device. Retrieved tobacco leaf from the heated tobacco was carbonized at various temperature(800/850/950℃). Carbonized tobacco leaf material synthesized at 850℃ exhibited the highest C/O ratio, indicating the finest carbon quality. In addition, polypyrrole was coated onto the carbonized leaf material for increasing the electrochemical performance via low-temperature polymerization method. As-synthesized carbonized leaf material at 850℃(CTL-850)-based electrode and polypyrrole-coated carbonized leaf material(CTL-850/PPy)-based electrode displayed outstanding specific capacitances of 100.2 and 155.3F g-1 at 1 A g-1 with opertaing window of -1.0V and 1.0V. Asymmetric supercapacitor device, assembled with CTL-850 as the negative electrode and CTL-850/PPy as the positive electrode, manifested specific capacitance of 31.1F g-1(@1 A g-1) with widened operating voltage window of 2.0V. Moreover, as-prepared asymmetric supercapacitor device was able to lighten up the RED Led (1.8V), suggesting the high capacitance and extension of operating voltage window. The result of this research may help to pave the new possibility toward preparing the effective energy storage device material recycling the biomass.

Assessing greenhouse gas footprint and emission pathways in Daecheong Reservoir (대청댐 저수지의 온실가스 발자국 및 배출 경로 평가)

  • Min, Kyeong Seo;Chung, Se Woong;Kim, Sung Jin;Kim, Dong Kyun
    • Journal of Korea Water Resources Association
    • /
    • 제55권10호
    • /
    • pp.785-799
    • /
    • 2022
  • The aim of this study was to characterize the emission pathways and the footprint of greenhouse gases (GHG) in Daecheong Reservoir using the G-res Tool, and to evaluate the GHG emission intensity (EI) compared to other energy sources. In addition, the change in GHG emissions was assessed in response to the total phosphorus (TP) concentration. The GHG flux in post-impoundment was found to be 262 gCO2eq/m2/yr, of which CO2 and CH4 were 45.7% and 54.2%, respectively. Diffusion of CO2 contributed the most, followed by diffusion, degassing, and bubbling of CH4. The net GHG flux increased to 510 gCO2eq/m2/yr because the forest (as CO2 sink) was lost after dam construction. The EI of Daecheong Reservoir was 86.8 gCO2eq/kWh, which is 3.7 times higher than the global EI of hydroelectric power, due to its low power density. However, it was remarkable to highlight the value to be 9.5 times less than that of coal, a fossil fuel. We also found that a decrease in TP concentration in the reservoir leads to a decrease in GHG emissions. The results can be used to improve understanding of the GHG emission characteristics and to reduce uncertainty of the national GHG inventory of dam reservoirs.

Adsorption and Regeneration Characteristics of Ammonia on NiCl2 Impregnated Adsorbents (NiCl2 첨착된 흡착제 상에서 암모니아의 흡착 및 재생 특성)

  • Lim, Jeong-Hyeon;Song, Kang;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • 제33권2호
    • /
    • pp.202-209
    • /
    • 2022
  • Effects of the support and amount of NiCl2 on ammonia adsorption capacity were investigated to improve the ammonia adsorption performance. NiCl2 was impregnated onto the surface of various supports under ultrasonic irradiation. The physicochemical properties and ammonia adsorption performance of NiCl2-impregnated adsorbents were investigated. Among the various supports, it was found that the adsorption capacity of ammonia was the best when NiCl2 was impregnated on activated carbon (AC) with the highest specific surface area. As a result of changing the amount of NiCl2 impregnated on AC, the NiCl2(2.0)/AC adsorbent impregnated with 2 mmol·g-1 of NiCl2 showed the highest ammonia adsorption capacity of 5.977 mmol·g-1. In addition, the adsorption capacity was found to be maintained at an almost constant level in five repeated cycle tests under the condition that low-temperature heat could be utilized. This indicates that the adsorbent has excellent regeneration ability.

Thermal Performance Evaluation of Composite Phase Change Material Developed Through Sol-Gel Process (졸겔공법을 이용한 복합상변화물질의 열성능 평가)

  • Jin, Xinghan;Haider, Muhammad Zeeshan;Park, Min-Woo;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제43권5호
    • /
    • pp.555-566
    • /
    • 2023
  • In this study, a composite phase change material (CPCM) produced using the SOL-GEL technique was developed as a thermal energy storage medium for low-temperature applications. Tetradecane and activated carbon (AC) were used as the core and supporting materials, respectively. The tetradecane phase change material (PCM) was impregnated into the porous structure of AC using the vacuum impregnation method, and a thin layer of silica gel was coated on the prepared composite using the SOL-GEL process, where tetraethyl orthosilicate (TEOS) was used as the silica source. The thermal performance of the CPCM was analysed using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). DSC results showed that the pure tetradecane PCM had melting and freezing temperatures of 6.4℃ and 1.3℃ and corresponding enthalpies 226 J/g and 223.8 J/g, respectively. The CPCM exhibited enthalpy of 32.98 J/g and 27.7 J/g during the melting and freezing processes at 7.1℃ and 2.4℃, respectively. TGA test results revealed that the AC is thermally stable up to 500℃, which is much higher than the decomposition temperature of the pure tetradecane, which is around 120℃. Moreover, in the case of AC-PCM and CPCM thermal degradation started at 80℃ and 100℃, respectively. The chemical stability of the CPCM was studied using Fourier-transform infrared (FT-IR) spectroscopy, and the results confirmed that the developed composite is chemically stable. Finally, the surface morphology of the AC and CPCM was analysed using scanning electron microscopy (SEM), which confirmed the presence of a thin layer of silica gel on the AC surface after the SOL-GEL process.

Finite Element Analysis of a Full-scale, Rapid-Disassembly, Carbon-Minimized Dismantle Connection Subjected to Cyclic Loading (주기적 하중을 받는 탄소감축을 위한 조립 해체가 용이한 급속 시공 접합부(TZcon)의 수치해석 연구)

  • Dave Montellano Osabel;Hyeong-Jin Choi;Sang-Hoon Kim;Young-Ju Kim;Jae-Hoon Bae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제37권4호
    • /
    • pp.275-282
    • /
    • 2024
  • A recently proposed rapid-disassembly , carbon-minimized dismantle connection was tested using cyclic loading. To better understand the behavior of the test specimen, three-dimensional finite element (3D-FE) analyses were conducted using a "tied model" (bolted contact surfaces are tied together) and a "bolt-slip model" (contact surfaces slip and separate). The tied model suggests that plastic hinging of the beam occurs if the proposed connection behaves rigidly. The bolt-slip model suggests that the proposed connection, if manufactured and assembled properly, can dissipate energy to about 0.5 times that experienced by a rigid connection. However, when compared in a test, its moment-rotation hysteresis curve does not match well, which suggests that the low performance of the test specimen is attributable to a manufacturing deficiency. Regardless, the results corroborate the pinching phenomenon observed in the experimental hysteresis and fracture failure of the test specimen.