• Title/Summary/Keyword: Low carbon/nitrogen ratio

Search Result 123, Processing Time 0.031 seconds

Effect of Circulation Cycle of Nutrient Solution on the Dissolved Oxygen Concentration, and the Growth and Phytonutrient Contents of Leafy Vegetables Grown in DFT Systems (양액의 순환주기가 담액수경 엽채류의 용존산소 농도, 생육 및 식물영양소의 함량에 미치는 영향)

  • Seo, Tae-Cheol;Rhee, Han-Cheol;Rho, Mi-Young;Choi, Kyeong-Lee;Yun, Hyung-Kwon;Chun, Chang-Hoo
    • Journal of Bio-Environment Control
    • /
    • v.18 no.2
    • /
    • pp.112-118
    • /
    • 2009
  • To determine the effects of circulation frequency of nutrient solution, three frequencies of 10min. on/10min. off; 10min. on/110min. off; and 10min. on/1,430min. off. treatments were applied to leafy vegetable production using deep flow technique (DFT) systems and their growth and phytonutrient content were investigated. In the 10min. on/I,430min. off treatment, dissolved oxygen concentration (DOC) 17 days after treatment decreased to 2.8mg. $L^{-1}$, known to be a low DOC that causes hypoxia, and thereafter decreased to 1.5mg. $L^{-1}$ 20 days after treatment. Fresh weight of 7 leafy vegetables in the 10min. on/1,430min. off treatment was lower by 0${\sim}$24% than those in the 10min. on/110min. off treatment, and those in the 10min. on/10min. off was higher by -2${\sim}$34% than those in the 10min. on/110min. off treatment as control. As the more frequent circulation was applied, the higher phosphorous content and the lower carbon to nitrogen ratio (C/N ratio) and total ascorbic acid contents were resulted. Results indicate that the circulation frequency of 110min, on/110min. off could be recommended for the production of the tested leafy vegetables in DFT systems.

Characterisitics of Redox Reaction of the Magnetite Powder Prepared by Hydrothermal Synthesis (수열합성법으로 합성된 마그네타이트 분말에 대한 산화.환원 특성)

  • Park, Sung Youl;Kang, Min Pil;Rhee, Young Woo;Nam, Sung Chan
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.751-755
    • /
    • 2005
  • Carbon dioxide, included in the flue gas from the combustion of fossil fuel, was known as a representative green house gas and various removal and utilization technologies of it has been studied for the prevention of global warming. This study was performed as an effort to find out a method to reuse carbon dioxide separated from flue gas by magnetite powder. Magnetite powder was synthesized using various oxidizers and alkalinity controlled aqueous solutions of $FeSO_4{\cdot}7H_2O$ and NaOH at 50, 80, 90, $100^{\circ}C$ and analyzed by XRD and SEM. The analysis results showed that magnetite powder synthesized at higher alkalinity and temperature had crystalline spinel and cubic structure. The reduction by hydrogen and the oxidation by carbon dioxide of synthesized powder were studied by TGA. The results showed that magnetite powder synthesized at low alkalinity and temperature was non-cubical amorphous but crystalline and cubical at high alkalinity and temperature. Comparing magnetite powders synthesized using oxidants(air and oxygen) and nitrogen, magnetite powder using more oxygen containing oxidant synthesized more crystalline magnetite powder. The experimental results of redox reaction of the synthesized magnetite powder showed that the reduction by hydrogen and the oxidation by carbon dioxide were seldom observed below $400^{\circ}C$ and observed well at $500^{\circ}C$. Magnetite powder synthesized at $100^{\circ}C$ and alkalinity(molal concentration ratio of $FeSO_4{\cdot}7H_2O$ to NaOH) of 2.0 using $O_2$ showed the highest reduction of 27.15 wt% and oxidation of 26.73 wt%, especially at reaction temperature of $500^{\circ}C$.

Regeneration Processes of Nutrients in the Polar Front Area of the East Sea II. Distribution of Particulate Organic Carbon and Nitrogen in Winter, 1995 (동해 극전선의 영양염류 순환과정 II. 1995년 동계 입자태 유기탄소 및 유기질소의 분포)

  • YANG Han-Soeb;MOON Chang-Ho;OH Seok-Jin;LEE Haeng-Pil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.442-450
    • /
    • 1997
  • The chemical properties of water masses were investigated at 33 stations of the southeastern last Sea in February, 1995 on board R/V Tam-Yang. The water masses were not clearly distinguished due to the vortical mixing in winter. However, on the basis of the T-S and $T-O_2$ diagrams, water masses in the study area were divided into five groups (Type I, Type II, Type III, Type IV, Type V). (1) $>9.0^{\circ}C,\;>34.35\;psu,\;5.08\~5.60m\ell/\ell$ at Type I, (2) $6.0\~9.0^{\circ}C,\;34.15\~34.35\;psu,\;5.60\~5.90\;m\ell/\ell$ at Type II, (3) $4.0\~6.0^{\circ}C,\;34.00\~34.15\;psu,\;>5.90m\ell/\ell$ at Type III, (4) $1.5\~4.0^{\circ}C,\;34.00\~34.05\;psu,\;5.40\~5.90\;m\ell/\ell$ at Type IV, (5) $<1.5^{\circ}C,\;34.05\~34.07\;psu,\;4.80\~5.40\;m\ell/\ell$ at Type V. In the vertical profiles of nutrients, the concentrations were very low in the surface layer and increased rapidly with depth. The highest concentrations occurred in Type IV, while the concentrations in Type I were the lowest. The N/P ratios were less than Redfield ratio, indicating that nitrogenous nutrients were the limiting factor tor phytoplankton growth. The concentrations of POC and PON were in the range of $0.49\~20.03\;{\mu}g-at/\ell\;and\;0.09\~5.34\;{\mu}g-at/\ell$, respectively. The relatively high concentration occured in the surface layer of inner shore, showing that the concentration at each water mass followed the order Type I > Type II > Type III > Type IV > Type V, respectively. The C:N ratio in particulate organic matter was lower than the values reported in other region due to relatively high concentrations of PON in the study area. Relatively high ratios of POC to chlorophyll $\alpha$ during the study periods indicate that non-living detritus comparised most of the POC in the study area.

  • PDF

Technical Evaluation of MBR Process for the Wastewater Treatment of Beverage Fabrication Processes (음료수 제조 공정 폐수의 MBR 처리 기술 평가)

  • Jung, Cheol Joong;Park, Jong Min;Kim, Youn Kook
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.63-68
    • /
    • 2014
  • Manufacturing facility for non-alcoholic drink, the parts of the food industry, disposes wastewater which includes high organic concentration and low nitrogen, phosphorus concentration. For this kind of wastewater, the treatment plant consists mainly of aerobic reactor and chemical coagulation process. And sand-filter or activated carbon process is normally installed further. However, aerobic reactor must have long HRT to treat high concentration of organic contaminant included in this wastewater, so the large site area is required. And settling tank which is normally applied for wastewater treatment facility has some problems such as water quality degradation caused by the sludge spill. To solve these problems, we applied MBR system for the wastewater. And the MBR pilot plant was installed nearby the wastewater treatment facility of W food factory and operated during long term to evaluate treatment efficiency. This plant was operated about 3 months and than the result was 97% of organic removal rate on conditions of flow rate $20m^3/day$, HRT 29 hr, recycle 4Q. However, contaminant removal ratio of bio-reactor decreased and TMP of membrane increased rapidly on more conditions.

Change of Blooming Pattern and Population Dynamics of Phytoplankton in Masan Bay, Korea (마산만 식물플랑크톤의 대발생 양상의 변화와 군집 동태)

  • Lee, Ju-Yun;Han, Myung-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.147-158
    • /
    • 2007
  • To clarify the bloom pattern and species succession in phytoplankton community, the population dynamics with the determination of physico-chemical factors have been studies in Masan Bay, the south sea of Korea, for the periods November 2003-October 2004. Concentration of $NH_4-N$ was always higher than that of $NO_3-N$, which was similar level as compared to other costal areas. $PO_4-P$ concentration was lower than those in other coastal areas but similar to oligotrophic environments. Thus, phosphate seems the limiting nutrient rather than nitrogen. $SiO_2-Si$ concentration was also low as compared to other costal areas. Si:P ratio was low from autumn to winter, suggesting silicate and/or phosphate limitation during this period. The cell density of phytoplankton was high in winter 2003 and early autumn 2004. The carbon biomass was high in winter 2003 and summer 2004. And chlorophyll-a concentration was high in late autumn 2003 and summer 2004. Among 78 species of phytoplankton found in the bay during the investigated period, dominant species were two diatoms of Cylindrotheca closterium, Skeletonema costatum, and three dinoflagellates of Heterocapsa triquetra, Prorocentrum minimum, P. triestinum, and one raphidophyte of Heterosigma akashiwo. P. minimum dominated from late autumn to winter, but it was replaced by H. triquetra in late winter. P. triestinum dominated from late spring to early summer. Simultaneously, H. akashiwo cell density steadily increased, and it became dominant with C. closterium in late summer. With decreasing of H. akashiwo and C. closterium, S. costatum became the most dominant species in autumn. The canonical analyses showed that total phytoplankton cell density related to diatom cell density and it was affected by temperature, and concentrations of $NO_3-N\;and\;PO_4-P$. The carbon bio-mass and $chlorophyll-{\alpha}$ concentration related to diatom- and dinoflagellate cell densities and these were affected by flagellate cell density, salinity, and concentrations of $SiO_2-Si\;and\;PO_4-P$. Last six years monitoring data in Masan city obtained from Korean Meteorological Agency indicates gradual increase in air temperature. And the precipitation decreased especially in spring season. The winter bloom found in 2003 may be caused by the increase in the temperature and this bloom subsequently induced the nutrients depletion, which continued until next spring probably due to no precipitation. Therefore, the spring bloom, which had been usually observed in the bay, might disappear in 2004.

Temporal and Spatial Variations of Particulate Organic Matter in the Southeastern Coastal Bays of Korea (한반도 남동 연안내만 입자유기물질의 시$\cdot$공간 변동 특성)

  • LEE Pil-Yong;KANG Chang-Keun;CHOI Woo-Jeung;LEE Won-Chan;YANG Han-Soeb
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.1
    • /
    • pp.57-69
    • /
    • 2001
  • The chemical, elemental and biochemical components of the suspended particulate matter (SPM) were investigated in order to quantify particulate organic matter (POM) and assess diet quality for suspension feeders in the southern coastal bay systems of Korea where the marine farming of the suspension feeders are most active, The intense field observation program was carried out seasonally in the three coastal bay systems of Chinhae, Gosung and Kangjin bays, The SPM was characterized as collective properties of organic carbon (POC), nitrogen (PON), phosphorus (PP) and more refined collective properties of protein (PPr), carbohydrate (PCHO) and chlorophyll a (Chl a) compound. Although the three coastal bays are regarded as phytoplankton based ecosystem, the SPM is not composed entirely with phytoplankton cells. Due to the shallow water depth, resuspension of bottom sediment contributes significantly to some of the regions. Therefore, concentration of SPM in the surface water did not co-vary with Chl a or PPr, PCHO. In general, temporal variation of POC, PON and Chl a contents in seawater were closely associated with phytoplankton biomass in the three coastal bays, However, PPr and PCHO contents in seawater were higher in Chinhae bay than in Gosung and Kangjin bays and Chl a PPr-N ratio was higher in Chinhae bay than in Kosung and Kangjin bays, since Chinhae bay is more eutrophicated than other bays. Average C : N ratios from regressions of POC and PON of SPM were 6.6, 6.6 and 5.0 in Chinhae, Gosung and Kangjin bays, respectively. SPM in Chinhae and Gosung bays appears to be made of largely phytoplankton cells and SPM in Kangjin bay appears to be contributed from the bacterial biomass due to the shallow water depth. N : P ratios from regressions of PON and PP of SPM were 10.8 and 14.7 in spring, and 18.2 and 24.6 in Chinhae and Gosung bays, respectively. With respect to the hypothetical Redfield molecule, phytoplankton appears to be limited by the lack of N and f in spring and summer, respectively, in the two bays, In Kangjin bay, N : P ratios from regressions of PON and PP of SPM were varied from 6.3 to 12.8 throughout the year. The low N : P ratio with resepct to the hypothetical Redfield molecule, phytoplankton growth appears to be limited by the lack of N-nutrients.

  • PDF

Study on the Biodegradability of Dispersants and Dispersant/Bunker-C Oil Mixtures and the Dissolved Oxygen Consumption in the Seawater(II) - The Biodegradability of Dispersant/Bunker-C Oil Mixtures and the Dissolved Oxygen Consumption in the Seawater - (해수중에서 유처리제 및 유처리제/Bunker-C유 혼합물의 생분해도와 용존산소소비에 관한 연구(II) - 유처리제/Bunker-C유 혼합물의 생분해도와 용존산소소비 -)

  • KIM Gwang-Su;PARK Chung-Kil;KIM Jong-Gu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.6
    • /
    • pp.519-528
    • /
    • 1993
  • The biodegradation experiment, the TOD analysis and the element analysis for dispersant, Bunker-C and dispersant/Bunker-C oil mixtures were conducted for the purposes of evaluating the biodegradability of dispersnat/Bunker-C oil mixtures and studying the consumption of dissolved oxygen with relation to biodegradation in the seawater. The results of biodegradation experiment showed the mixtures with $1:10{\sim}5:10$ mix ratios of dispersant to 4mg/l of Bunker-C oil to be $0.34{\sim}2.06mg/l$ of $BOD_5$ and to be $1.05{\sim}5.47mg/l$ of $BOD_{20}$ in natural seawater. The results of TOD analysis showed 1mg of Bunker-C oil to be 3.16mg of TOD. The results of element analysis showed the contents of carbon and hydrogen to be $87.3\%\;and\;11.5\%$ for Bunker-C oil, respectively, but nitrogen element was not detected in Bunker-C oil. The biodegradability of dispersant/Bunker-C oil mixture shown as the ratio of $BOD_5$/TOD was increased from $3\%\;to\;11\%$ as a mix ratio of dispersant to 4mg/l of Bunker-C oil changed from 1:10 to 5:10, and the mixtures were found to belong in the organic matter group of low-biodegradability. The deoxygenation rates($K_1$) and ultimate oxygen demands($L_o$) obtained through the biodegration experiment and Thomas slope method were found to be $0.072{\sim}0.097/day$ and $1.113{\sim}6.746mg/l$ for the mixtures with $1:10{\sim}5:10$ mix ratios of dispersant to 4mg/l of Bunker-C oil, respectively. The ultimate oxygen demand of mixture was increased as a mix ratio of dispersant to Bunker-C oil changed from 1:10 to 10:5. This means that the more dispersants are applied to the sea for Bunker-C oil cleanup, the more decreases the dissolved oxygen level in the seawater.

  • PDF

Recovery of Lipids from Chlorella sp. KR-1 via Pyrolysis and Characteristics of the Pyrolysis Oil (Chlorella sp. KR-1 열분해에 의한 지질 회수 및 열분해 오일 특성 분석)

  • Lee, Ho Se;Jeon, Sang Goo;Oh, You-Kwan;Kim, Kwang Ho;Chung, Soo Hyun;Na, Jeong-Geol;Yeo, Sang-Do
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.672-677
    • /
    • 2012
  • Lipids in microalgal biomass were recovered by using pyrolysis method. The pyrolysis experiments of two Chlorella sp. KR-1 samples, which have triglyceride contents of 10.8% and 36.5%, respectively were carried out at $600^{\circ}C$ to investigate the effects of lipid contents in the cells on the reaction characteristics. The conversion and liquid yield of the lipid-rich sample were higher than those of the lipid-lean sample since its carbon to hydrogen ratio was low. There were low molecular weight organic acids, ketones, aldehydes and alcohols in the liquid products from both KR-1 samples, but the pyrolysis oil of the lipid-rich sample was abundant in free fatty acids, particularly palmitic acid, oleic acid and stearic acid while the content of nitrogen containing organic compounds was low. The microalgal pyrolysis oil had two layers composed of the light hydrophobic fraction and the heavy hydrophilic fraction. The light fraction might be originated from triglycerides and the heavy fraction might be from carbohydrates and proteins. In the light fraction of the liquid products, there were considerable linear alkanes such as pentadecane and heptadecane as well as free fatty acids, implying that deoxygenation reaction including decarboxylation was occurred during the pyrolysis. The yield of the liquid products from the pyrolysis of the KR-1 sample having triglyceride content of 36.5% was 56.9% and the light fraction in the liquid products was 68.2%. Also more than 80% of the light fraction was free fatty acids and pure hydrocarbons, thus showing that most triglycerides could be extracted in the form of suitable raw materials for biofuels.

The Spatio-temporal Distribution of Organic Matter on the Surface Sediment and Its Origin in Gamak Bay, Korea (가막만 표층퇴적물중 유기물량의 시.공간적 분포 특성)

  • Noh Il-Hyeon;Yoon Yang-Ho;Kim Dae-Il;Park Jong-Sick
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 2006
  • A field survey on the spatio-temporal distribution characteristics and origins of organic matter in surface sediments was carried out monthly at six stations in Gamak Bay, South Korea from April 2000 to March 2002. The range of ignition loss(IL) was $4.6{\sim}11.6%(7.1{\pm}1.6%)$, while chemical oxygen demand(CODs) ranged from $12.25{\sim}99.26mgO_2/g-dry(30.98{\pm}19.09mgO_2/g-dry)$, acid volatile sulfide(AVS) went from no detection(ND)${\sim}10.29mgS/g-dry(1.02{\pm}0.58mgS/g-dry)$, and phaeopigment was $6.84{\sim}116.18{\mu}g/g-dry(23.72{\pm}21.16{\mu}g/g-dry)$. The ranges of particulate organic carbon(POC) and particulate organic nitrogen(PON) were $5.45{\sim}23.24 mgC/g-dty(10.34{\pm}4.40C\;mgC/g-dry)$ and $0.71{\sim}2.99mgN/g-dry(1.37{\pm}0.58mgN/g-dry)$, respectively. Water content was in the range of $43.1{\sim}77.6%(55.8{\pm}5.6%)$, and mud content(silt+clay) was higher than 95% at all stations. The spatial distribution of organic matter in surface sediments was greatly divided between the northwestern, central and eastern areas, southern entrance area from the distribution characteristic of their organic matters. The concentrations of almost all items were greater at the northwestern and southern entrance area than at the other areas in Gamak Bay. In particular, sedimentary pollution was very serious at the northwestern area, because the area had an excessive supply of organic matter due to aquaculture activity and the inflow of sewage from the land. These materials stayed longer because of the topographical characteristics of such as basin and the anoxic conditions in the bottom seawater environment caused by thermocline in the summer. The tendency of temporal change was most prominently in the period of high-water temperatures than low-water ones at the northwestern and southern entrance areas. On the other hand, the central and eastern areas did not show a regular trend for changing the concentrations of each item but mainly showed a higher tendency during the low-water temperatures. This was observed for all but AVS concentrations which were higher during the period of high-water temperature at all stations. Especially, the central and eastern areas showed a large temporal increase of AVS concentration during those periods of high-water temperature where the concentration of CODs was in excess of $20mgO_2/g-dry$. The results show that the organic matters in surface sediments in Gamak Bay actually originated from autochthonous organic matters with eight or less in average C/N ratio including the organic matters generated by the use of ocean, rather than terrigenous organic matters. However, the formation of autochthonous organic matter was mainly derived from detritus than living phytoplankton, indicated the results of the POC/phaeopigment ratio. In addition, the CODs/IL ratio results demonstrate that the detritus was the product of artificial activities such as dregs feeding and fecal pellets of farm organisms caused by aquaculture activities rather than the dynamic of natural ocean activities.

  • PDF

Anaerobic Biodegradability of Leachates Generated at Landfill Age (매립년한에 따른 침출수의 혐기성 생분해 특성)

  • Shin, Hang-Sik;Lee, Chae-young;Kang, Ki-hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.1
    • /
    • pp.90-96
    • /
    • 2000
  • The composition of leachates varies depending on the waste characteristics, landfill age and landfilling method. Generally, leachates contain high dissolved organic substance and ammonia nitrogen whereas phosphorus concentration was very low. Leachate A produced from young landfill is characterized by high BOD5/COD ratio (0.8) whereas leachate C produced from old landfill has lower BOD5/COD ratio (0.1). Maximum biochemical methane potential of leachate A, B (from medium landfill) and C were 271,106 and 4 ml CH4/g-COD, respectively. On the other hand, the maximum biodegradability of leachate A, B, and C were 75,30, and 1%, respectively. These results indicated that anaerobic treatment of leachate from young landfill was effective in removing organic pollutants. In case of leachate C, carbon might reside in the form of large molecular weight organic compounds such as lignins, humic acids and other polymerized compounds of soils, which are resistant to biodegradation. The lag-phase period increased with the increasing organic concentration in leachate. In case of leachate A of concentration greater than 25%, the lag-phase period increased sharply. This implied that the start-up period of anaerobic process using an unacclimated inoculum could be extended due to the higher concentration of leachate. This relatively long lag-phase is probably related to the fact that most of the inhibitory compounds have been diluted beyond their inhibitory concentrations of less than 50%. Furthermore, the ultimate methane yield and methane production rate decreased as leachate concentration increased. It was anticipated the potential inhibition was related with the steady-state inhibition as well as the initial shock load.

  • PDF