• Title/Summary/Keyword: Low bit rate video coding

Search Result 116, Processing Time 0.029 seconds

Joint Spatial-Temporal Quality Improvement Scheme for H.264 Low Bit Rate Video Coding via Adaptive Frameskip

  • Cui, Ziguan;Gan, Zongliang;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.426-445
    • /
    • 2012
  • Conventional rate control (RC) schemes for H.264 video coding usually regulate output bit rate to match channel bandwidth by adjusting quantization parameter (QP) at fixed full frame rate, and the passive frame skipping to avoid buffer overflow usually occurs when scene changes or high motions exist in video sequences especially at low bit rate, which degrades spatial-temporal quality and causes jerky effect. In this paper, an active content adaptive frame skipping scheme is proposed instead of passive methods, which skips subjectively trivial frames by structural similarity (SSIM) measurement between the original frame and the interpolated frame via motion vector (MV) copy scheme. The saved bits from skipped frames are allocated to coded key ones to enhance their spatial quality, and the skipped frames are well recovered based on MV copy scheme from adjacent key ones at the decoder side to maintain constant frame rate. Experimental results show that the proposed active SSIM-based frameskip scheme acquires better and more consistent spatial-temporal quality both in objective (PSNR) and subjective (SSIM) sense with low complexity compared to classic fixed frame rate control method JVT-G012 and prior objective metric based frameskip method.

Model-based Macroblock Layer Rate Control for Low Bit Rate Video Coding (저전송률 비디오 압축을 위한 모델 기반 매크로블록 레이어 비트율 제어)

  • Park, Sang-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.50-57
    • /
    • 2009
  • This paper presents a new model-based macroblock layer rate control algorithm for low bit rate video coding which generates output bits corresponding to a target bit budget. The H.264 standard uses various coding modes and optimization methods to improve the compression performance, which makes it difficult to control the generated traffic accurately in low bit rate environments. In the proposed scheme, we first estimate MAD values of macroblocks in a frame and define a target remaining bits using the estimated MAD values before encoding each macroblock. If a difference between the target value and the actual value is greater than a threshold value, the quantization parameter is adjusted to decrease the difference. It is shown by experimental results that the new algorithm can obtain more than 66% decrease of the difference between the target bits and the resulting bits for a frame with the PSNR performance better than that of the existing rate control algorithm.

A New Video Coding Algorithm using 3D-Subband Coding and Lattice Vector Quantization

  • Park, Joong-Han;Lee, Keun-Young
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.131-137
    • /
    • 1997
  • In this paper, we propose an efficient motion adaptive 3-dimensional (3D) video coding algorithm using 3D subband coding (3D-SBC) and lattice vector quantization (LVQ) for low bit rate. Instead of splitting input video sequences into the fixed number of subbands along the temporal axes, we decompose them into temporal subbands of variable size according to motions in frames. Each spatio-temporally splitted 7 subbands are partitioned by quadtree technique and coded with lattice vector quantization(LVQ). The simulation results show 0.1∼4.3dB gain over H.261 in peak signal to noise ratio (PSNR) at low bit rate(64Kbps).

  • PDF

Region-based H.263 Video Codec with Effective Rate Control Algorithm for Low VBR Video

  • Song, Hwangjun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1755-1766
    • /
    • 1999
  • A region-based video codec based on the H.263+ standard is examined and its associated novel rate control scheme is proposed in this work. The region-based coding scheme is a hybrid method that consists of the traditional block DCT coding and the object-based coding. Basically, we adopt H.263+ as the platform, and develop a fast macroblock-based segmentation method to implement the region-based video codec. The proposed rate control solution includes rate control in three levels: encoding frame selection, frame-layer rate control and macroblock-layer rate control. The goal is to enhance the visual quality of decoded frames at low bit rates. The efficiency of proposed rate control scheme applied to the region-based video codes is demonstrated via several typical test sequences.

  • PDF

Bit Assignment for Wyner-Ziv Video Coding (Wyner-Ziv 비디오 부호화를 위한 비트배정)

  • Park, Jong-Bin;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.128-138
    • /
    • 2010
  • In this paper, we propose a new bit assignment scheme for Wyner-Ziv video coding. Distributed video coding (DVC) is a new video coding paradigm which enables greatly low complexity encoding because it does not have any motion prediction module at encoder. Therefore, it is very well suited for many applications such as video communication, video surveillance, extremely low power consumption video coding, and other portable applications. Theoretically, the Wyner-Ziv video coding is proved to achieve the same rate-distortion (RD) performance comparable to that of the joint video coding. However, its RD performance has much gap compared to MC-DCT-based video coding such as H.264/AVC. Moreover, Transform Domain Wyner-Ziv (TDWZ) video coding which is a kind of DVC with transform module has difficulty of exact bit assignment because the entire image is treated as a same message. In this paper, we propose a feasible bit assignment algorithm using adaptive quantization matrix selection for the TDWZ video coding. The proposed method can calculate suitable bit amount for each region using the local characteristics of image. Simulation results show that the proposed method can enhance coding performance.

Advanced Real-Time Rate Control for Low Bit Rate Video Communication

  • Kim, Yoon
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.5
    • /
    • pp.513-520
    • /
    • 2006
  • In this paper, we propose a novel real-time frame-layer rate control algorithm using sliding window method for low bit rate video coding. The proposed rate control method performs bit allocation at the frame level to minimize the average distortion over an entire sequence as well as variations in distortion between frames. A new frame-layer rate-distortion model is derived, and a non-iterative optimization method is used for low computational complexity. In order to reduce the quality fluctuation, we use a sliding window scheme which does not require the pre-analysis process. Therefore, the proposed algorithm does not produce time delay from encoding, and is suitable for real-time low-complexity video encoder. Experimental results indicate that the proposed control method provides better visual and PSNR performance than the existing TMN8 rate control method.

  • PDF

A Study of Very Low Bit-Rate Color Video Coding Using Adaptive Wavelet Trasform (적응적 웨이블릿 변환을 이용한 저속 비트율 컬러 비디오 코딩에 관한 연구)

  • Kim, Hye-Gyeong;O, Hae-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2S
    • /
    • pp.701-710
    • /
    • 2000
  • This paper presents a new method for an efficient coding of very low bit-rate color video based on adaptive wavelet transform. Our approach reveals that the coding process works more efficiently if the quantized wavelet coefficients are preprocessed by a mechanism exploiting the redundancies in the wavelet subband structure. Thus, we focuses optimized activity of coding part, and exhaustive overlapped block motion compensation is utilized to ensure coherency in motion compensated error frames, and raised cosine window is applied. The horizontal and vertical components of motion vectors are encoded separately using adaptive arithmetic coding while significant wavelet coefficients are encoded in bit-plane order using adaptive arithmetic coding. On average the proposed codec exceeds H.263 and ZTE in peak signal-to-noise ratio by as much as 2.07 and 1.38dB at 28 kbits, respectively. Fore entire sequence coding, 3DWCVC method is superior to H.263 and ZTE by 0.35 and 0.71dB on average, respectively.

  • PDF

Very Low Bit Rate Video Image Coder Using the Fractals

  • Kim, Yong-Hon;Jang, Jong-Whan;Jeong, Jae-Gil;Park, Doo-Yeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2E
    • /
    • pp.85-91
    • /
    • 1996
  • New very low bit rate segmentation video image coding technique is proposed by segmenting image into textually homogeneous regions. Regions are classified into one of three perceptually distinct texture classes(perceived constant intensity, smooth texture, and rough texture) using the Human Visual System(HVS) and the fractals. To design very low bit rate video image coder, it is very important to determine the best block size for estimation the fractal dimension and the thresholding of the fractal dimension for each texture class. Good quality reconstructed images are obtained with about 0.10 to 0.21 bit per pixel(bpp) for many different types of imagery.

  • PDF

MPEG-4 Rate Control Method with Spatio-Temporal Trade-Offs (시공간 화질의 절충을 고려한 MPEG-4 비트율 제어 알고리즘)

  • Lee Jeong-Woo;Ho Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.1
    • /
    • pp.47-56
    • /
    • 2004
  • This paper describes a new bit allocation algorithm that can achieve a constant bit rate when coding multiple video objects, while improving rate-distortion (R-D) performance over the VM5 method for MPEG-4 object-based video coding. In particular, we propose two models to estimate the rate-distortion characteristics of coded objects as well as skipped objects. Based on the proposed models, we present several R-D coding modes with spatio-temporal trade-offs to improve coding efficiency. The proposed algorithm is performed at the object level for object-based video coding. Simulation results demonstrate moderate improvement at low as well as high bit rates. The proposed algorithm can produce the actual coded bits very close to the target bits over a wide range of bit rates. Consequently, the proposed algerian has not experienced any buffer overflow or underflow over the bit rates between 32 kbps and 256 kbps.

Embedded Video Compression Scheme using Wavelet Transform and 3-D Block Partition (Wavelet 변환과 3-D 블록분할을 이용하는 Embedded 비디오 부호화기)

  • Yang, Change-Mo;Lim, Tae-Beom;Lee, Seok-Pil
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.190-192
    • /
    • 2004
  • In this paper, we propose a low bit-rate embedded video compression scheme with 3-D block partition coding in the wavelet domain. The proposed video compression scheme includes multi-level 3-dimensional dyadic wavelet decomposition, raster scanning within each subband, formation of block, 3-D partitioning of block, and adaptive arithmetic entropy coding. Although the proposed video compression scheme is quit simple, it produces bit-stream with good features, including SNR scalability from the embedded nature. Experimental results demonstrate that the proposed video compression scheme is quit competitive to other good wavelet-based video coders in the literature.

  • PDF