• Title/Summary/Keyword: Low beam

Search Result 1,844, Processing Time 0.026 seconds

Modification of Linear Low Density Polyethylene by Irradiation of Electron Beam (전자선조사에 의한 선형저밀도폴리에틸렌의 개질)

  • 오장훈;천성득;황규면
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.256-258
    • /
    • 1998
  • An experimental study was done to improve the processability and optical property of linear low density polyethylene(LLDPE) film. By modifying the molecular structure of LLDPE with electron beam we could get the improved processability and optical property of film. By appropriate dosing of electron beam and a small addition of UV-stabilizer it was possible to produce gel-free film with low haze. The proceassability was also improved.

  • PDF

Bending Performance Evaluation of Hybrid Composite Beam with Low Depth and New Shape (춤이 작은 신형상 고성능 하이브리드 합성보의 휨성능 평가)

  • Kim, Sung Bae;Cho, Seong Hyun;Oh, Kwang Soo;Jeon, Yong Han;Choi, Young Han;Kim, Sang Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.3
    • /
    • pp.151-162
    • /
    • 2016
  • This study developed the shape of low depth new shape high performance hybrid composite beam which is taken strengths and compensated the defect of composite beam and hybrid beam. Also, this study performed the monotonic test to evaluate the bending performance of Low depth shape by creating 12 bending specimens. Bending performance test result showed that capacity of the beam was increased stably. Also, it is possible to apply the existing evaluation equation(KBC 2009) of composite beam. Mechanical properties and structural performance of materials are considered when high-strength steel ($F_y=650MPa$) is applied to the bottom plate.

Measurement of secondary electron emission coefficient(${\gamma}$) with oblique low energy ion and work function ${\phi}_{\omega}$ of theMgO thin film in AC-PDPs

  • Park, W.B.;Lim, J.Y.;Oh, J.S.;Jeong, H.S.;Jung, K.B.;Jeon, W.;Cho, G.S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.507-510
    • /
    • 2004
  • Oblique ion-induced secondary electron emission coefficient(${\gamma}$) with low energy ..and work function ${\phi}_{\omega}$(${\theta}$ = 0 and ${\theta}$ = 20) of the MgO thin film in AC-PDPs has been measured by ${\gamma}$-FIB system. The MgO thin film has been deposited from sintered material under electron beam evaporation method. The energy of $He^+$ ions used has been ranged from 50eV to 150eV. Oblique ion beam has been chosen to be 10 degree, 20 degree and 30 degree. It is found that the higher secondary electron emission coefficient(${\gamma}$) has been achieved by the higher oblique ion beam up to inclination angle of 30 degree than the perpendicular incident ion beam.

  • PDF

Design Study for Pulsed Proton Beam Generation

  • Kim, Han-Sung;Kwon, Hyeok-Jung;Seol, Kyung-Tae;Cho, Yong-Sub
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.189-199
    • /
    • 2016
  • Fast neutrons with a broad energy spectrum, with which it is possible to evaluate nuclear data for various research fields such as medical applications and the development of fusion reactors, can be generated by irradiating proton beams on target materials such as beryllium. To generate short-pulse proton beam, we adopted a deflector and slit system. In a simple deflector with slit system, most of the proton beam is blocked by the slit, especially when the beam pulse width is short. Therefore, the available beam current is very low, which results in low neutron flux. In this study, we proposed beam modulation using a buncher cavity to increase the available beam current. The ideal field pattern for the buncher cavity is sawtooth. To make the field pattern similar to a sawtooth waveform, a multiharmonic buncher was adopted. The design process for the multiharmonic buncher includes a beam dynamics calculation and three-dimensional electromagnetic simulation. In addition to the system design for pulsed proton generation, a test bench with a microwave ion source is under preparation to test the performance of the system. The design study results concerning the pulsed proton beam generation and the test bench preparation with some preliminary test results are presented in this paper.

Tilt Angle Generation in NLC on Homeotropic Polymer Surface with Ion Beam Irradiation as a Function of Incident Angle

  • Lee, Sang-Keuk;Seo, Dae-Shik;Choi, Dai-Seub
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.120-122
    • /
    • 2008
  • We have studied the tilt angle generation on the homeotropic polyimide (PI) surface using a low intensity ion beam source as a function of incident angle. An excellent LC alignment of nematic liquid crystal (NLC) on the PI surface with ion beam exposure for all incident angles was observed. The tilt angle of NLC on the homeotropic PI surface for all incident angles was from 90 to 88 degree was observed. Also the tilt angle of NLC on the homeotropic PI surface with ion beam exposure of 400 eV had a tendency to increase as ion beam energy incident angle become more instance from 45 degree. Finally, a good LC alignment thermal stability on the homeotropic PI surface with ion beam exposure can be achieved.

A Study on the Influence of Pure Iron Purity of Electric Lens on the Electron Beam Control (전자빔 가공기의 전자렌즈 순철순도가 빔 제어에 미치는 영향)

  • Lee Chan-Hong;Ro Seung-Kook
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.149-153
    • /
    • 2005
  • The electron beam machining provides very high resolution up to nanometer scale, hence the E-beam writing technology is rapidly growing in MEMS and nano-engineering areas. In the optical column of the e-beam writer, there are several lenses condensing and focusing electron beams from electron gun with fringing magnetic fields. The polepieces of these lenses are usually made with high purity iron which is hard to fabricate and very expensive. In this paper, the possibility of using polepiece of object lens composed with pure iron and low carbon steel was examined to reduce cost. The magnetic field at object lens was calculated with finite element method, and practical focusing qualities of SEM pictures were observed comparing for the object lens polepieces with pure iron and two type of composed with low carbon steel.

  • PDF

Partially restrained beam-column weak-axis moment connections of low-rise steel structures

  • Lim, Woo-Young;Lee, Dongkeun;You, Young-Chan
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.663-674
    • /
    • 2020
  • In this study, partially restrained beam-column moment joints in the weak-axis direction were examined using three large-scale specimens subject to cyclic loading in order to assess the seismic resistance of the joints of low-rise steel structures and to propose joint details based on the test results. The influence of different number of bolts on the moment joints was thoroughly investigated. It was found that the flexural capacity of the joints in the direction of weak axis was highly dependent on the number of high-tension bolts. In addition, even though the flexural connections subjected to cyclic loading was perfectly designed in accordance with current design codes, severe failure mode such as block shear failure could occur at beam flange. Therefore, to prevent excessive deformation at bolt holes under cyclic loading conditions, the holes in beam flange need to have larger bearing capacity than the required tensile force. In particular, if the thickness of the connecting plate is larger than that of the beam flange, the bearing capacity of the flange should be checked for structural safety.

Experimental study of beam-column connections with web opening in a low-rise steel frame

  • Wang, Xiuli;Yin, Zhanzhong;Li, Qingfu;Shen, Shizhao
    • Structural Engineering and Mechanics
    • /
    • v.26 no.3
    • /
    • pp.263-276
    • /
    • 2007
  • Steel frame structures have been widely used in multi-storey and high-rise buildings and the connections in these structures are critical. In the Northridge and Kobe Earthquake, beam-column connections suffered damage due to brittle fracture. According to seismic design codes, ductility of the beam to column connection is also necessary. A study on the behavior of a beam to column connection with the aim of improving ductility as well as preventing brittle failure was carried out. In order to control the position of a plastic hinge on the beam, a connection with a hole in the beam web was developed. Five specimens with different parameters under cyclic load were assessed. The results are presented in terms of the stress distribution of the beam, hysteretic behavior, and ultimate capacity. Furthermore, the finite element method was also used to analyze the model, and the results were compared with those obtained from the experiment. It is shown from the analysis and experimental results that this type of connection is effective in terms of improving ductility for a beam to column connection in low-rise buildings.

Thermal study of a scanning beam in granular flow target

  • Ping Lin;Yuanshuai Qin;Changwei Hao;Yuan Tian ;Jiangfeng Wan ;Huan Jia ;Lei Yang ;Wenshan Duan ;Han-Jie Cai ;Sheng Zhang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4310-4321
    • /
    • 2022
  • The concept of dense granular-flow target (DGT) for the China Initiative Accelerator Driven Subcritical system (CiADS) is an attractive choice for high heat removal ability, low chemical toxicity, and radiotoxicity. A wobbling hollow beam is proposed to enhance the homogeneity of temperature rise of flowing particles in beam-target coupling zone. In this paper, the design procedure of target and beam parameters was discussed firstly. Then we simulated the heat deposition and transfer of the scanning beam in DGT to study the effect of beam parameters. The results show the flux density of proton beam plays a crucial role in the distribution of temperature rise while the contributions from scanning frequency heat transfer are also obvious. Moreover, heat transfer in transversal directions is insignificant, resulting in a low heat flux towards the sidewalls of DGT. This work not only contributes to the design of DGT, but also beneficial for understanding the beam-target coupling in porous materials.

$SiO_2$ 식각을 위한 판형 Low Angle forward Reflected Neutral Beam 식각장치에 관한 연구

  • 정승재;이도행;염근영
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.56-56
    • /
    • 2003
  • 플라즈마 식각에서 물리적 손상과 전기적 손상은 차세대 Nanoscale 소자와 Deep - Submicron 반도체공정에서 해결되어야 할 가장 큰 문제 중 하나이다. 이 중 전기적인 손상을 줄이기 위한 몇 가지 무손상 공정이 제시되고 있으며, 그러한 기술 중의 하나가 이온빔의 Low Angle Forward Reflection을 이용한 식각방법이다. Low Angle Forward Reflection방법은 이온소오스로부터 발생시킨 이온을 Low Angle 에서 Reflection-시켜 이온빔을 중성화되도록 하는 방법으로, 이전 연구를 통해 Reflection시 입사각이 5도일 경우 대부분의 이온들이 중성화되는 결과를 얻었다. 또한, 실험에 사용된 $SF_6,{\;}NF_3,{\;}CF_4$와 같은 모든 가스종에서 유사한 값의 중성화 정도를 관찰할 수 있었으며, 이러한 가스를 이용하여 $Si0_2$ 식각시 Vertical한 Profile 결과를 얻었다. 본 연구에서는 기존 Grid 장치에서 이온소오스 부분에 Low Angle Forward Reflected Neutral Beam을 위한 판형 Reflector를 부착하였으며, 이에 따라 중성빔의 Flux가 크게 향상되며 Beam의 직진성을 향상시킬 수 있었다. 또한, F계열 가스를 이용한 실험을 통해 $Si0_2$ 식각율과 식각특성 면에서 향상된 실험결과를 얻을 수 있었다.

  • PDF