• Title/Summary/Keyword: Low area ratio

Search Result 1,310, Processing Time 0.036 seconds

A Study on Finned Tube Used in Turbo Refrigerator(III) -for Pressure Drop- (터보 냉동기용 핀 튜브에 관한 연구 (III) -압력 손실에 관하여-)

  • Han, Kyu-Il;Kim, Si-Young;Cho, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.6 no.1
    • /
    • pp.58-76
    • /
    • 1994
  • Heat transfer and pressure drop measurements are made on low integral-fin tubes in turbulent water flow condition. The integral-fin tubes investigated in this paper are nominally 19mm in diameter. Eight tubes have been used with trapezoidally shaped integral-fins having fin density from 748 to 1654 fpm and 10, 30 grooves. Plain tube having same diameter as finned tube is also tested for comparison. Experiments are carried out using R-11 as working fluid. The refrigerant condensates at a saturation state of $30^{\circ}C$ on the outside tube surface cooled by coolant. The amount of noncondensable gases present in the test loop is reduced to a negligible value by repeated purging. For a given heat input to the boiler and given cooling water flow rate, all test data are taken on steady state. The heat transfer loop is used for testing single long tubes and cooling water is pumped from a storage tank through filters and flowmeters to the horizontal test section where it is heated by steam condensing on the outside of the tube. The pressure drop across the test section is measured by means of pressure gauge and manometer. Each tube tested is cleaned with sodium dichromate pickling solution and well rinsed with water prior to installation in the test section. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, heat transfer of finned tube is enhanced up to 4 times as that of a plain tube at constant Reynolds number and up to 2 times at constant pumping power. 2. Friction factors are up to 1.6~2.1 times those of plain tube. 3. At a given Reynolds number, Nusselt number decrease with increasing pitch to diameter. 4. The constant pumping power ratio for low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio.

  • PDF

Enzymatic Synthesis of Low-trans Fats Containing Conjugated Linoleic Acids and Their Physicochemical Characteristics (Conjugated Linoleic Acid(CLA)를 함유한 기능성 저트랜스 유지의 효소적 합성 및 이화학적 특성 연구)

  • Nam, Ha-Young;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.6
    • /
    • pp.752-760
    • /
    • 2008
  • Scale-up production of low-trans fat containing conjugated linoleic acid (CLA-TFO) was performed through lipase-catalyzed synthesis. Blend of fully hydrogenated soybean oil, olive oil containing conjugated linoleic acid and palm oil with 1:2:7 ratio was interesterified through Lipozyme RM IM in the 1 L-batch type reactor at $65^{\circ}C$ for 12 hrs, and the physicochemical and melting properties of CLA-TFO were compared with conventional (high trans fat) or commercial low-trans fat shortening. The trans fatty acids content in the conventional shortening (48.8 area%) was much higher than that of low-trans shortening (0.4 area%) and CLA-TFO (0.3 area%+CLA; 7.6 area%). Acid, saponification and iodine values of CLA-TFO were 0.4, 173.9 and 59.0, respectively. Their ${\alpha}$-, ${\gamma}$-tocopherol contents showed 4.7, 1.0 mg/100 g. Differences were observed in the solid fat contents (SFC), melting point of the conventional or low-trans fat and CLA-TFO. Each SFC of conventional, low-trans fat and CLA-TFO was 32.0, 29.3 and 30.4% with melting point of 38.5, 43.0 and $39.5^{\circ}C$ at $35^{\circ}C$, respectively. In texture profile analysis, hardness of conventional, low-trans fat and CLA-TFO was 111.7, 75.2 and 63.8 g.

Derivation of Green Coverage Ratio Based on Deep Learning Using MAV and UAV Aerial Images (유·무인 항공영상을 이용한 심층학습 기반 녹피율 산정)

  • Han, Seungyeon;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1757-1766
    • /
    • 2021
  • The green coverage ratio is the ratio of the land area to green coverage area, and it is used as a practical urban greening index. The green coverage ratio is calculated based on the land cover map, but low spatial resolution and inconsistent production cycle of land cover map make it difficult to calculate the correct green coverage area and analyze the precise green coverage. Therefore, this study proposes a new method to calculate green coverage area using aerial images and deep neural networks. Green coverage ratio can be quickly calculated using manned aerial images acquired by local governments, but precise analysis is difficult because components of image such as acquisition date, resolution, and sensors cannot be selected and modified. This limitation can be supplemented by using an unmanned aerial vehicle that can mount various sensors and acquire high-resolution images due to low-altitude flight. In this study, we proposed a method to calculate green coverage ratio from manned or unmanned aerial images, and experimentally verified the proposed method. Aerial images enable precise analysis by high resolution and relatively constant cycles, and deep learning can automatically detect green coverage area in aerial images. Local governments acquire manned aerial images for various purposes every year and we can utilize them to calculate green coverage ratio quickly. However, acquired manned aerial images may be difficult to accurately analyze because details such as acquisition date, resolution, and sensors cannot be selected. These limitations can be supplemented by using unmanned aerial vehicles that can mount various sensors and acquire high-resolution images due to low-altitude flight. Accordingly, the green coverage ratio was calculated from the two aerial images, and as a result, it could be calculated with high accuracy from all green types. However, the green coverage ratio calculated from manned aerial images had limitations in complex environments. The unmanned aerial images used to compensate for this were able to calculate a high accuracy of green coverage ratio even in complex environments, and more precise green area detection was possible through additional band images. In the future, it is expected that the rust rate can be calculated effectively by using the newly acquired unmanned aerial imagery supplementary to the existing manned aerial imagery.

Fabrication Development of Stainless Steel - cast Iron Dual Tube (스테인리스강-주철 이중복합관의 제조개발에 관한 연구)

  • Choi, Sang-Ho;Kang, Choon-Sik
    • Journal of Korea Foundry Society
    • /
    • v.8 no.4
    • /
    • pp.429-436
    • /
    • 1988
  • The influences of some casting conditions on bonding ratio and state at bonding zone of stainless steel-cast iron dual tube produced by centrifugal casting process were investigated to estimate fabrication technics. 1) Bonding ratio is increasing such as increasing of inner surface temperature of outer metal(stainless steel STS 304), if pouring temperature of inner metal (cast iron) is constant. 2) The more pouring temperature of inner metal (cast iron) increase, the more bonding ratio increase when inner surface temperature of outer metal (cast iron) is constant. 3) As the mold rotary speed is increase, the hatching area of bonding map (perfect bonding area) goes down to the low pouring temperature of inner metal. 4) In order to predict bonding state of two different metal, we are able to make and use the bonding map about casting conditions such as inner surface temperature of outer metal, pouring temperature of inner metal and mold rotary speed.

  • PDF

Effect of Rib Height on Turbulence and Convective Heat Transfer (리브의 높이가 난류 및 열전달특성에 미치는 영향)

  • Nine, Md.J.;Kim, S.J.;Jeong, H.M.;Chung, H.S.;Rahman, M.Sq.
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.30-37
    • /
    • 2012
  • Effect of rib heights is found as significant parameter to enhance convective heat transfer performance under laminar and low turbulent regime. Circular ribs with different ribheight to channel height ratios, e/H = 0.05, 0.1, 0.15, are fabricated over the copper substrate respectively in a rectangular duct having 7.5 cross sectional aspect ratio. Only one rib pitch to rib height ratio (P/e = 10) has been chosen for all different height ribs. The result shows that the arithmetic average of turbulence intensity decreases with decreasing roughness height calculated between two ribs under laminar and low turbulent region. It occurs because the area of recirculation and reattachment zone also decreases with decreasing rib height. Optimum thermal enhancement factor is derived by 0.1 rib height to channel height ratio under low turbulent region but 0.15 rib height to channel height ratio gives maximum subjected to laminar flow.

Exploiting Spatial Reuse Opportunity with Power Control in loco parentis Tree Topology of Low-power and Wide-area Networks (대부모 트리 구조의 저 전력 광역 네트워크를 위한 전력 제어 기반의 공간 재사용 기회 향상 기법)

  • Byeon, Seunggyu;Kim, Jong Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.239-250
    • /
    • 2022
  • LoRa is a physical layer technology designed to secure highly reliable long-range communication with introducing loco parentis tree network and chirp spreading spectrum. Since since a leaf can send message to more than one parents simultaneously with a single transmission in a region, packet delivery ratio increases logarithmically as the number of gateways increases. The delivery ratio, however, dramatically collapses even under loco parentis tree topology due to the limitations of ALOHA-like primitive MAC, . The proposed method is intended to exploit SDMA approach to reuse frequency in an area. With the view, TxPower of each sender for each message in a concurrent transmission is elaborately controlled to survive the collision at different gateway. Thus, the gain from the capture effect improves the capacity of resource-hungry Low Power and Wide Area Networks.

Study on the Salt Tolerance of Rice and Other Crops in Reclaimed Soil Areas. 6. The Comparison of Growth in the Direct Sowing and Transplanting of Rice Culture in the Reclaimed Salty Areas (간척지에서 수도 및 기타작물의 내염성에 관한 연구 6. 염분간척지에서 직파법과 이앙법에 의한 수도생육의 비교)

  • 임형빈
    • Journal of Plant Biology
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 1970
  • The Nongkwang variety was sown directly in the field by the three methods of dibbling, drill seeding and broad-casting in non-, low- and high-salty areas, and compared with the growth of transplanted rice in each areas. The yield of rough rice was increased remarkably by direct sowing when compared with that produced by transplanting inboth salty areas, but in non-salty area, the former was decreased significantly. There was no significant difference in the yields of rough rice resulting from three seedling methods of direct sowing in each area. The direct sowing method was predominated in number of panicle, weight of panicle, ratio of matured grains, milling recovery percentage, and straw weight in both salty areas, and dicreased in panicle weight and ratio of matured grain in nonsalty area.

  • PDF

Effect of High Tube Voltage and Scatter Ray Post-processing Software on Image Quality and Radiation Dose During Chest Anteroposterior Radiography (흉부 전·후방향 검사 시 고관전압 및 산란선 후처리 소프트웨어 적용이 화질과 선량에 미치는 영향)

  • Kim, Jong-Seok;Joo, Young-Cheol;Lee, Seung-Keun
    • Journal of radiological science and technology
    • /
    • v.44 no.4
    • /
    • pp.295-300
    • /
    • 2021
  • This study aims to present new chest AP examination exposure conditions through a study on the effect on image quality and patient dose by applying high tube voltage and scatter ray post-processing software during chest AP examination in digital radiography equipment. This study was used a human body phantom and in the chest AP position, the dosimeter was placed horizontally at the thoracic spine 6. The experiment was conducted by dividing into a low tube voltage (70 kVp, 400 mA, 3.2 mAs) group and a high tube voltage (100 kVp, 400 mA, 1.2 mAs) group. The collimation size (14″× 17″) and the source to image receptor distance(110 cm) were same applied to both groups. Radiation dose was presented to dose area product and entrance surface dose. Image quality was compared and analyzed by comparing the difference between the signal-to-noise ratio and the contrast-to-noise ratio of the image according to the application of the scatter ray post-processing software under each condition. The average value of the entrance surface dose in the low and high tube voltage conditions was 93.04±0.45 µGy and 94.25±1.51 µGy, which was slightly higher in the high tube voltage condition, but the dose area product was 0.97±0.04 µGy and 0.93±0.01 µGy. There was a statistically significant difference in the group mean value(p<0.01). In terms of image quality, the values of the signal-to-noise ratio and the contrast noise ratio were higher in the high tube voltage than in the low tube voltage, and decreased when the scattering line post-processing function was used, but the contrast resolution was improved. If there is a scatter ray post-processing function during chest AP examination, it is helpful to actively utilize it to improve the image quality. However, when this function is not available, I thought that applying a higher tube voltage state than a low tube voltage state will help to realize images with a large amount of information without changing the dose.

A Study on The Optimum Structure of Dye-sensitized Solar Cell for Upscaling (염료감응형 태양전지의 대면적화를 위한 최적 구조 연구)

  • Seo, Hyun-Woong;Kim, Mi-Jeong;Hong, Ji-Tae;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1295-1296
    • /
    • 2007
  • A lot of researches about dye-sensitized solar cell (DSC) are recently being conducted. Because DSC has several advantages to pass the limits of silicon solar cells such as a low manufacturing expense, a simple manufacturing process and its transparency. But most researches on DSC are still conducted about the unit cell and laboratory-centered. That is, present researches on DSC are not practical. Therefore, researches about large area cells and modules have to be prerequisites for DSC to have the practicality. Characteristics of large area DSC are so different from those of small area DSC in aspect of fill factor and efficiency. In this study, we made an experiment on finding suitable size of DSC that has the most effective power according to the variation of active area. In detail, the experiment was conducted about the optimum ratio of length to width and we introduced the ratio of active area to non-active area to find the active area which has the best output. Because small DSC doesn‘t have the best output in comparison with total area of cell although the smaller DSC has the better efficiency. As a result, we achieved the optimum ratio of length to width of 8:3 and active area of $8cm^2$ as the optimum size for upscaling DSC.

  • PDF

Effects of Light Environment on Dry Matter Production and Growth of Zoysia japonica (광환경이 한국들잔디(Zoysia japonica)의 물질생산과 생장에 미치는 영향)

  • 도봉현
    • Asian Journal of Turfgrass Science
    • /
    • v.13 no.1
    • /
    • pp.1-20
    • /
    • 1999
  • This study was carried out to investigate the interaction between productivity and light condition and to analyze the material productivity and productive charactaristics under different hours of light in Zoysia japonica. 1. Rate increasement of leaf number and total leaf length was remarkably high at the early growth stage in the control and 9 hour light treatment. The rate gradually decreased as growth proceeded. But 3 hour treatment was very low in the rate from its early growth stage through the whole test period. 2. The increasing rate of leaf area ratio (LAR) in all the experimental plots was remarkably high at the early growth stage after transplanting the grass. The shorter photoperiod resulted remarkable lower increasement of LAR. 3. The rhizome growth rate of the 9 hour photoperiod was high contrast to the 3 hour photoperiod treatment. The increasing rate of node number was also showed similar trend. 4. Chlorophyll content was very high at the 36 days after transplanting and then decreased gradually. Chlorophyll content on 3 hours photoperiod plot severely decreased. The ratio of chlorophyll a to b was decreased significantly at short day treatment. 5. The content of soluble sugar was increased at shorter photoperiod. The highest ratio of sugar content was on August, 28 by HPLC method. Such a result was attributed to accumulation of sugar in spite of low synthesis of ploysacchrides, translocation by low consumption. 6. The increasing rate of standings in all light treatment was high at the early growth stage after transplanting. Short photoperiod treatment by 3hour showed especially low prganic productivity on Zoysia japonica.

  • PDF