• 제목/요약/키워드: Low Velocity Impact Model

검색결과 82건 처리시간 0.023초

Experimental and Numerical Simulation Studies of Low-Velocity Impact Responses on Sandwich Panels for a BIMODAL Tram

  • Lee, Jae-Youl;Shin, Kwang-Bok;Jeong, Jong-Cheol
    • Advanced Composite Materials
    • /
    • 제18권1호
    • /
    • pp.1-20
    • /
    • 2009
  • This paper describes the results of experiments and numerical simulation studies on the impact and indentation damage created by low-velocity impact subjected onto honeycomb sandwich panels for application to the BIMODAL tram. The test panels were subjected to low-velocity impact loading using an instrumented testing machine at six energy levels. Contact force histories as a function of time were evaluated and compared. The extent of the damage and depth of the permanent indentation was measured quantitatively using a 3-dimensional scanner. An explicit finite element analysis based on LS-DYNA3D was focused on the introduction of a material damage model and numerical simulation of low-velocity impact responses on honeycomb sandwich panels. Extensive material testing was conducted to determine the input parameters for the metallic and composite face-sheet materials and the effective equivalent damage model for the orthotropic honeycomb core material. Good agreement was obtained between numerical and experimental results; in particular, the numerical simulation was able to predict impact damage area and the depth of indentation of honeycomb sandwich composite panels created by the impact loading.

Impact-resistant design of RC slabs in nuclear power plant buildings

  • Li, Z.C.;Jia, P.C.;Jia, J.Y.;Wu, H.;Ma, L.L.
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3745-3765
    • /
    • 2022
  • The concrete structures related to nuclear safety are threatened by accidental impact loadings, mainly including the low-velocity drop-weight impact (e.g., spent fuel cask and assembly, etc. with the velocity less than 20 m/s) and high-speed projectile impact (e.g., steel pipe, valve, turbine bucket, etc. with the velocity higher than 20 m/s), while the existing studies are still limited in the impact resistant design of nuclear power plant (NPP), especially the primary RC slab. This paper aims to propose the numerical simulation and theoretical approaches to assist the impact-resistant design of RC slab in NPP. Firstly, the continuous surface cap (CSC) model parameters for concrete with the compressive strength of 20-70 MPa are fully calibrated and verified, and the refined numerical simulation approach is proposed. Secondly, the two-degree freedom (TDOF) model with considering the mutual effect of flexural and shear resistance of RC slab are developed. Furthermore, based on the low-velocity drop hammer tests and high-speed soft/hard projectile impact tests on RC slabs, the adopted numerical simulation and TDOF model approaches are fully validated by the flexural and punching shear damage, deflection, and impact force time-histories of RC slabs. Finally, as for the two low-velocity impact scenarios, the design procedure of RC slab based on TDOF model is validated and recommended. Meanwhile, as for the four actual high-speed impact scenarios, the impact-resistant design specification in Chinese code NB/T 20012-2019 is evaluated, the over conservation of which is found, and the proposed numerical approach is recommended. The present work could beneficially guide the impact-resistant design and safety assessment of NPPs against the accidental impact loadings.

저속 충격하에서의 금속복합재료의 동적 특성 (Dynamic Behaviors of Metal Matrix Composites in Low Velocity Impact)

  • 남현욱;;;한경섭
    • Composites Research
    • /
    • 제12권1호
    • /
    • pp.68-75
    • /
    • 1999
  • 본 연구에서는 저속 충격에서 충격 속도에 따른 금속복합재료의 동적 거동을 연구하였다. 시험에 사용된 재료는 모재로 AC8A와 보강재로 알루미나($Al_2O_3$)와 탄소를 사용하였으며 용탕 주조법을 이용하여 금속복합재료를 제조하였다. 금속복합재료에는 15%의 부피분율을 가진 알루미나 예비성형체와 알루미나와 탄소를 각각 12%와 3% 사용한 혼합 에비성형체가 사용되었다. 제조된 금속복합재료는 인장 시험과 진동 시험을 통해 인장 강도와 탄성계수를 구하였으며, 저주파 여파기(low pass filter)와 계장화 충격 시험기를 이용하여 충격 속도에 따른 금속복합재료의 충격 거동을 연구하였다. 저주파 여파기를 이용함으로써 충격 속도에 관계없이 안정적인 실험치를 확보할 수 있었다. 충격 속도의 증가에 따라 모재와 금속복합재료의 충격에너지는 증가하였으나, 동적인성치는 일정한 값을 보였다. 충격 속도가 증가할수록 충격에너지 중 균열전파에너지의 향상이 두드러졌으며, 재료의 변형량이 증가하였다. 충격에너지 중 균열개시에너지와 동적파괴인성치의 관계를 설명하기 위하여 변형율 에너지와 노치에서의 응력 분포를 이용하여 간단한 모델을 제시하였으며, 이로부터 균열개시에너지는 동적 파괴 인성치의 자승에 비례하고 탄성계수에 반비례하는 것을 보였다.

  • PDF

바이모달 트램 적용 하니컴 샌드위치 복합재 패널의 저속 충격 해석 (Simulation of Low Velocity Impact of Honeycomb Sandwich Composite Panels for the BIMODAL Tram Application)

  • 이재열;정종철;신광복
    • Composites Research
    • /
    • 제20권4호
    • /
    • pp.42-50
    • /
    • 2007
  • 본 논문에서는 바이모달 트램의 차체와 바닥재 구조 재료로 적용되는 2종류의 샌드위치 패널에 대한 충격 손상을 시험과 수치해석을 통해 상호 비교하였다. 적용된 시편은 $100mm{\times}100mm$의 크기를 가지며 저속충격시험기를 사용하여 4가지 경우의 충격에너지에 대해 시험하였다. 또한, 저속충격 조건에 따라 차체 적용 샌드위치 구조물의 저속 충격 특성을 유한요소해석으로 분석하기 위해 범용 외연유한요소해석 프로그램인 LS-DYNA3D를 이용하여 특성을 분석하였다. 이때 금속재와 복합재 재료의 손상모델, 그리고 직교이방성 특성을 갖는 하니컴 재료의 유효손상모델을 제시하기 위하여 기계적 특성 시험을 수행하여 물성 파라메터를 획득하였고, 시험과 해석결과 충격 하중에 대한 샌드위치 패널의 손상 영역과 깊이를 비교적 잘 예측할 수 있음을 증명하였다.

Design and analysis of low velocity impact on thermoplastic hat section with curvilinear profile

  • Gaur, Kumresh K;Dwivedi, Mayank;Bhatnagar, Naresh
    • Advances in materials Research
    • /
    • 제6권1호
    • /
    • pp.65-78
    • /
    • 2017
  • A hat section was designed and developed for maximum impact energy absorption and/or transmission under low velocity impact. Towards this, different hat sections, having material properties of thermoplastic, were modeled and investigated numerically using finite element analysis (FEA) in the range of 20-50 J impact energy. In the study it was experienced that the design configuration of hat section with curvilinear profile (HSCP) was excellent in energy attenuation capacity and for even distribution of maximum impact force around and along the hat section under low velocity impact loading. To validate the numerical findings, polypropylene copolymer (Co-PP) HSCP and low density polyethylene (LDPE) HSCP were developed and evaluated experimentally in the said impact energy range. A correlation was established between FEA and experimental test results, thereby, validating a numerical model to predict results for other thermoplastic materials under given range of impact energy. The LDPE HSCP exhibited better performance as compared to Co-PP HSCP in the said range of impact energy. The findings of this study will enable the engineers and technologists to design and develop low velocity impact resistance devices for various applications including devices to protect bone joints.

저속충격을 받는 적층복합재료 평판의 미시구조를 고려한 interlaminar stress 거동 연구 (Interlaminar stress behavior of laminated composite plates under Low velocity Impact)

  • 지국현;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.249-252
    • /
    • 2005
  • Prediction of damage caused by low-velocity impact in laminated composite plate is an important problem faced by designers using composites. Not only the inplane stresses but also the interlaminar normal and shear stresses playa role in estimating the damage caused. The work reported here is an effort in getting better predictions of damage in composite plate using DNS approach. In the DNS model, we discretize the composite plates through separate modeling of fiber and matrix for the local microscopic analysis. Through comparison with the homogenized model. In the view of microscopic mechanics with DNS model, interlaminar stress behaviors in the inside of composite materials is investigated and compared with the results of the homogenized model which has been used in the conventional approach of impact analysis.

  • PDF

라미네이트 복합재 판의 저속 충격 손상 모델링 (Modeling of Low Velocity Impact Damage in Laminated Composites)

  • 공창덕;이정환
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.240-244
    • /
    • 2005
  • In this study a simple model is developed that predicts impact damage in a composite laminate using an analytical model. The model uses a non-linear approximation method (Rayleigh-Ritz) and the large deflection plate theory to predict the number of failed plies and damage area in a quasi-isotropic composite circular plate (axisymmetric problem) due to a point impact load at its centre. It is assumed that the deformation due to a static transverse load is similar to that occurred in a low velocity impact. It is found that the model, despite its simplicity, is in good agreement with FEM predictions and experimental data for the deflection of the composite plate and gives a good estimate of the number of failed plies due to fibre breakage. The predicted damage zone could be used with a fracture mechanics model developed by the second investigator and co-workers to calculate the compression after impact strength of such laminates. This approach could save significant running time when compared to FEM solutions.

  • PDF

Modelling of Low Velocity Impact Damage In Laminated Composites

  • Lee Jounghwan;Kong Changduk;Soutis Costas
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.947-957
    • /
    • 2005
  • In this study a simple model is developed that predicts impact damage in a composite laminate avoiding the need of the time-consuming dynamic finite element method (FEM). The analytical model uses a non-linear approximation method (Rayleigh-Ritz) and the large deflection plate theory to predict the number of failed plies and damage area in a quasi-isotropic composite circular plate (axisymmetric problem) due to a point impact load at its centre. It is assumed that the deformation due to a static transverse load is similar to that oc curred in a low velocity impact. It is found that the model, despite its simplicity, is in good agreement with FEM predictions and experimental data for the deflection of the composite plate and gives a good estimate of the number of failed plies due to fibre breakage. The predicted damage zone could be used with a fracture mechanics model developed by the second investigator and co-workers to calculate the compression after impact strength of such laminates. This approach could save significant running time when compared to FEM solutions.

Transient energy flow in ship plate and shell structures under low velocity impact

  • Liu, Z.S.;Swaddiwudhipong, S.;Lu, C.;Hua, J.
    • Structural Engineering and Mechanics
    • /
    • 제20권4호
    • /
    • pp.451-463
    • /
    • 2005
  • Structural members commonly employed in marine and off-shore structures are usually fabricated from plates and shells. Collision of this class of structures is usually modeled as plate and shell structures subjected to dynamic impact loading. The understanding of the dynamic response and energy transmission of the structures subjected to low velocity impact is useful for the efficient design of this type of structures. The transmissions of transient energy flow and dynamic transient response of these structures under low velocity impact are presented in the paper. The structural intensity approach is adopted to study the elastic transient dynamic characteristics of the plate structures under low velocity impact. The nine-node degenerated shell elements are adopted to model both the target and impactor in the dynamic impact response analysis. The structural intensity streamline representation is introduced to interpret energy flow paths for transient dynamic response of the structures. Numerical results, including contact force and transient energy flow vectors as well as structural intensity stream lines, demonstrate the efficiency of the present approach and attenuating impact effects on this type of structures.

Low velocity impact response and dynamic stresses of thick high order laminated composite truncated sandwich conical shell based on a new TDOF spring-mass-damper model considering structural damping

  • Azizi, A.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • 제26권6호
    • /
    • pp.771-791
    • /
    • 2018
  • This paper deals with the low velocity impact response and dynamic stresses of composite sandwich truncated conical shells (STCS) with compressible or incompressible core. Impacts are assumed to occur normally over the top face-sheet and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The displacement fields of core and face sheets are considered by higher order and first order shear deformation theory (FSDT), respectively. Considering continuity boundary conditions between the layers, the motion equations are derived based on Hamilton's principal incorporating the curvature, in-plane stress of the core and the structural damping effects based on Kelvin-Voigt model. In order to obtain the contact force, the displacement histories and the dynamic stresses, the differential quadrature method (DQM) is used. The effects of different parameters such as number of the layers of the face sheets, boundary conditions, semi vertex angle of the cone, impact velocity of impactor, trapezoidal shape and in-plane stresses of the core are examined on the low velocity impact response of STCS. Comparison of the present results with those reported by other researchers, confirms the accuracy of the present method. Numerical results show that increasing the impact velocity of the impactor yields to increases in the maximum contact force and deflection, while the contact duration is decreased. In addition, the normal stresses induced in top layer are higher than bottom layer since the top layer is subjected to impact load. Furthermore, with considering structural damping, the contact force and dynamic deflection decrees.