• Title/Summary/Keyword: Low Temperature Waste Heat

Search Result 125, Processing Time 0.027 seconds

Implementation of Dynamic Context-Awareness Platform for Internet of Things(IoT) Loading Waste Fire-Prevention based on Universal Middleware (유니버설미들웨어기반의 IoT 적재폐기물 화재예방 동적 상황인지 플랫폼 구축)

  • Lee, Hae-Jun;Hwang, Chi-Gon;Yoon, Chang-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1231-1237
    • /
    • 2022
  • It is necessary to dynamic recognition system with real time loading height and pressure of the loading waste, the drying of wood, batteries, and plastic wastes, which are representative compositional wastes, and the carbonization changes on the surface. The dynamic context awareness service constituted a platform based on Universal Middleware system using BCN convergence communication service as a Ambient SDK model. A context awareness system should be constructed to determine the cause of the fire based on the analysis data of fermentation heat point with natural ignition from the load waste. Furthermore, a real-time dynamic service platform that could be apply to the configuration of scenarios for each type from early warning fire should be built using Universal Middleware. Thus, this issue for Internet of Things realize recognition platform for analyzing low temperature fired fire possibility data should be dynamically configured and presented.

Preparation of Pt Catalysts for 2-propanol Dehydrogenation using Sol-gel Method (솔-젤법을 이용한 2-propanol 탈수소화 반응 Pt 촉매의 제조)

  • Lee, Yeong-Kweon;Lee, Hwaung;Song, Hyung Keun;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.328-334
    • /
    • 2007
  • Chemical heat pump system of 2-propanol/acetone/hydrogen is most suitable to the recovery of waste heat of power plant. various types of 5 wt% Pt-alumina catalysts were prepared for 2-propanol dehydrogenation using sol-gel method. The characteristics and the dehydrogenation reaction rate of each catalyst were investigated. Pt-alumina xerogel catalyst has excellent reaction rate and good durability in comparison with the existing alumina supported Pt catalysts. Pt-alumina aerogel catalyst had the highest reaction rate in all prepared catalysts, but sufficient aging time was necessary to maintain its reaction rate. A potential advantage of the aerogel catalyst is the fact that the high temperature heat treatment is not required. Without heat treatment or with low temperature heat treatment, the Pt-alumina aerogel catalyst has excellent reaction rate as well as durability and this gives us the economic advantage. Alumina xerogel supported Pt catalyst prepared by incipient wetness method showed good reaction rate, and had good mechanical strength. Blank alumina xerogel prepared by sol-gel method can be used for the support of metal catalysts.

Analysis for the Economic efficiency of District Heating and Gas Engine Co-generation System comparing with Central Heating System (중앙난방방식을 지역난방.소형열병합난방방식으로 전환시의 경제성 비교 분석)

  • Kim, Kyu-Saeng;Lee, Sang-Hyeok;Hong, Kyung-Pyo;Won, Young-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.459-465
    • /
    • 2007
  • This study was conducted to calculate the LCC of a apartment complex with a type of heating system, district heating and cogeneration system. For the purpose of analyzing LCC according to size of apartment complex, 500, 1,500 and 4,000 houses of model apartment selected. This research performs design of heating system and the life cycle cost analysis including an initial cost, energy cost, maintenance and operation cost, replacement cost and renovation cost during the project period(15years). According to the calculated results, 1) Initial cost of cogeneration system with 500, 1500 and 4000 houses is higher than district heating system each of 20%, 13%, 12%. 2) In case of cogeneration system, the payback period by electric generation is 5.21, 4.92 and 4.47 years and saving cost was calculated 29 billion won, 94 billion won and 262 billion won after payback period. 3) Cogeneration system LCC was 1.12, 1.07 and 1.06 times larger than district system with the size of apartment complex. According to the case of this study district heating system is more efficient than cogeneration system in terms of the reduction of LCC. 4) Gas Engine Co-generation System is more efficient than other systems because it can collect progressive part from electric charge progressive stage system. However, the efficiency is decreasing because of raising of fuel bills(LNG) and lowering of power rate for house use. Especially the engine is foreign-made so the cost of maintenance and repair is high and the technical expert is short. 5) District heating is also affected by fuel bills so we should improve energy efficiency through recovering of waste heat(incineration heat, etc.). Also, we should supply district cooling on the pattern of heat using of let the temperature high in winter and low in summer.

  • PDF

Analysis of the Economic Efficiency of the District Heating and Gas Engine Co-Generation System Compared with the Central Heating System (중앙난방방식을 지역난방과 소형열병합난방 방식으로 전환 시 경제성 비교 분석)

  • Kim, Kyu Saeng
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.10
    • /
    • pp.544-551
    • /
    • 2015
  • This study was conducted to determine the LCC of apartment complexes with district heating and a cogeneration system. For the purpose of analyzing LCC according to the size of the apartment complex, 500, 1,500, and 4,000-unit model apartments were selected. Analysis was performed on the design of the heating system and the life cycle cost including total construction cost, maintenance and operation cost for the duration of the project period (15 years). According to the calculated results, 1) The initial cost of the cogeneration system for 500, 1,500, and 4,000-unit apartments is higher than that of the district heating system by 20%, 13%, and 12%, respectively. 2) In the case of the cogeneration system, the payback period by electric generation was found to be 5.21, 4.92 and 4.47 years, and saving cost was calculated to be 29 billion won, 94 billion won and 262 billion won after the payback period for 500, 1,500, and 4,000-unit apartments, respectively. 3) The LCC values of the cogeneration system were 1.12, 1.07 and 1.06 times larger than those of the district system according to the size of the apartment complex. In this study, the district heating system was found to be more efficient than the cogeneration system in terms of LCC reduction. 4) District heating is affected by fuel bills, so energy efficiency should be improved through recovering waste heat (incineration heat, etc.). Also, district cooling should be provided according to heat use to keep the temperature high in winter and low in summer.

Study on the Thermal Characteristic Comparison of Fire.Explosion Hazard of Fugitive Dust Generated in the Manufacturing Process (제조공정상 발생하는 비산분진의 화재·폭발 위험성에 대한 열적특성 비교에 관한 연구)

  • Sun, Ko Jae
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.1
    • /
    • pp.71-83
    • /
    • 2014
  • This study carried out an experiment in order to compare thermal characteristics after collecting dust generated in the process of disposing of waste tire, plywood flour in the process of manufacturing plywood, salicylic acid dust in the process of manufacturing functional soap, and dust in the process of manufacturing wheat powder, which has potential fire and explosion hazard. According to the results of experiment, the analysis showed that all samples subject to the experiment were in the condition where heat flux decreased and temperature decreased as the quantity of added talc was increased. This shows that decomposition rate decreased, and hazard decreased. However, in all of samples subject to the experiment, as heating rate increased, endothermic onset temperature moved to the low-temperature part, and the amount of absorbed heat was largely increased. This showed that the decomposition hazard of sample increased as heating rate increased, according to the analysis. Besides, TGA experiment results showed that thermal stability was secured because total weight loss decreased as the amount of talc was increased for all samples subject to the experiment regarding the ratio of weight loss. It is expected that the continuous research and supplementation of dust explosion mechanism in the future will contribute to the establishment of measures for the effective dust explosion prevention.

Study of Reduction of Mismatch Loss of a Thermoelectric Generator (열전발전 시스템의 부정합손실 저감방안 연구)

  • Choi, Taeho;Kim, Tae Young
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.294-301
    • /
    • 2022
  • In this study, a multi-layer cascade (MLC) electrical array configuration method for thermoelectric generator consisting of plural number of thermoelectric modules (TEMs) was proposed to reduce mismatch loss caused by temperature maldistribution on the surfaces of the TEMs. To validate the effect of MLC on the mismatch loss reduction, a numerical model capable of reflecting multi-physics phenomena occuring in the TEMs was developed. MLC can be employed by placing a group of TEMs experiencing relatively low temperature differences in an electric layer with more electrical branches while locating a group of TEMs experiencing relatively high temperature differences in an electric layer with less electrical branches. The TEMs were classified using the temperature distribution obtained by the numerical model. A MLC with an optimal electrical branch ratio showed a 96.5% of electric power generation compared to an ideal case.

Study on the control technique for the heat transportation system using metal hydride (수소저장합금을 이용한 열수송시스템 제어기술 연구)

  • Sim, K.S.;Kim, J.W.;Kim, J.D.;Myung, K.S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.1
    • /
    • pp.43-49
    • /
    • 2000
  • The heat transportation from a complex of industry to a rural area needs more efficient method because the distance between them is usually more than 10km. Conventional heat transportation using steam or hot water via pipe line has limits in transportation distance (about 3~5 km) because of the heat loss and frictional loss in the pipe line. Metal hydride can absorb or discharge hydrogen through exothermic or endothermic reaction. After releasing hydrogen from metal hydride by means of the waste heat from industry, we can transport this hydrogen to urban area via pipe line. In urban areas, other metal alloy reacts with this hydrogen to form metal hydride and produces heat for heating. Cool heat is also obtained if it is possible to use metal hydride with low reaction temperature. Therefore, metal hydride can be used as a media for transportation and storage of heat. $MmNi_{4.5}Al_{0.5}Zr_{0.003}$, $LaNi_5$, $Zr_{0.9}Ti_{0.1}Cr_{0.6}Fe_{1.4}$, $MmNi_{4.7}Al_{0.1}Fe_{0.1}V_{0.1}$ alloys were selected for this purpose and the properties of those metal hydrides were discussed. The design and control techniques were proposed and discussed for this heat transportation system using metal hydride.

  • PDF

Performance Characteristics of Organic Rankine Cycles Using Medium Temperature District Heating Water as Heat Source (지역난방용 중온수 열원 유기랭킨사이클 성능 특성)

  • Park, Woo-Jin;Yoo, Hoseon
    • Plant Journal
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • It is becoming increasingly important to make use of alternative energy source. because It is not able to rely on only fossil fuel for the recent increasing demand of energy consumption. With this situation, lots of studies for utilizing low grade energy such as industrial waste heat, solar energy, and geothermal energy have been conducted. The aim of this study is to predict the operation characteristics of working fluid by using performance analysis program (ThermoFlex) through the system analysis which is not mixing district return water but using ORC(Organic Rankine Cycle, hereinafter ORC) as a downstream cycle when accumulating district heating (hereinafter DH). In this study, We conducted the performance analysis for the case which has the district heating water temperature($120^{\circ}C$) and Flow rate of $163m^3/h$ (including District Heating return water flow), and examined several working fluid which is proper to this temperature. The case using R245fa (which is the best-case) showed 269.2kW power output, 6.37% efficiency. Additionally, Cut down on fuel was expected because of the boiler inlet temperature increase by being Formed $57.3{\sim}85^{\circ}C$ in a temperature of district heating return water, depending on a pressure change of a condenser in ORC system.

  • PDF

An Analysis of Simulation Model for Smelting Reduction Process of Waste Containing Iron Oxide (함철 폐기물의 용융환원 공정에 관한 분석연구)

  • Dong-Joon Min
    • Resources Recycling
    • /
    • v.5 no.4
    • /
    • pp.17-24
    • /
    • 1996
  • The computer simulation model was established to verify the applicability of smelting reduction concept to treatment of industrial wastes which becomes issue on the enviromental and recycling view point. Computer simulation model provides as following results. The increase of post combustion ratio(PCR) and heat transfer efficiency of PC energy(HTE) is effective ways to save energy. But, in order to increase PCR, recovery efficiency of post combustion energy(HTE) have to be higher than 85% HTE considering refractory life and saving energy together. Coke is most useful fuel source because it shows lowest dependence of PCR and low hydrogen content. The quality of hot metal of current process would be expected to the similar level with that of blast furnace. The utilization of scrap and Al dross can be also possible to maximize the advantages of current process which is high temperature and chemical dilution with hot metal and slag. In case of scrap, energy consumption was slightly increases because of heating up energy of scrap. Consquently, current process concept provides the possibility of intergrating recycles of industrial wastes materials such as EAF slag, coke oven dust, life terminated acidic refractory, aluminium dross and scrap by smelting reduction process.

  • PDF

Design and Configuration of 200kW Organic Rankine Cycle Turbine (200kW ORC 터빈 개발 및 구성)

  • Han, Sangjo;Seo, JongBeom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1057-1064
    • /
    • 2014
  • Recently, there has been a growing interest in sustainable energy. One method that has been used is an organic Rankine cycle using conventional turbine technology with a low-temperature waste heat source. A 200-kW organic Rankine cycle (ORC) system was designed for a waste heat recovery application using R245fa as the working fluid. A radial turbine running at 15,000 rpm was employed to generate more than 200 kW with an expansion ratio of nine. Because an ORC turbine uses a refrigerant as the working fluid, the ideal gas law was not employed to design the turbine. In addition, the complexity of the molecular structure of R245fa made it difficult to design the turbine. Because R245fa has an Ma value of one at a low velocity for the working fluid (about 1/3 of the speed of sound in air) at about $100^{\circ}C$, it easily reaches a supersonic flow condition with a small pressure expansion. To increase the efficiency of the turbine, a dual stage radial-type turbine with a subsonic speed was suggested. This paper will describe the design procedure and performance evaluation of the ORC turbine using R245fa.