• Title/Summary/Keyword: Low Temperature Waste Heat

Search Result 125, Processing Time 0.025 seconds

Theoretical Analysis on the Factors Affecting the Power Efficiency of the Kalina Cycle (칼리나 사이클의 발전효율에 영향을 미치는 요소에 관한 이론적 해석)

  • Lee, Ki-Woo;Chun, Won-Pyo;Shin, Hyeon-Seung;Park, Byung-Duck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5425-5433
    • /
    • 2014
  • This study examined the effects of the key parameters on the power efficiency of the waste heat power plant using the EES program to obtain data for the design of the 20kW Kalina power plant. The parameters include the ammonia mass fraction, vapor pressure, heat source temperature, and the cooling water temperature. According to the analyses, a lower ammonia mass fraction and a higher vapor pressure increase the efficiency, in general. On the other hand, this study shows that there is a specific region with a very low ammonia mass fraction, where the efficiency decreases with ammonia mass fraction. Regarding the vapor pressure at the turbine inlet, the power efficiency increases with increasing vapor pressure. In addition, it was found that the influence of the vapor pressure on the efficiency increases with increasing ammonia mass fraction. Finally, the optimal condition for the maximum power efficiency is defined in this study, i.e., the maximum efficiency was 15% with a 25bar vapor pressure, $160^{\circ}C$ heat source temperature, $10^{\circ}C$ cooling water temperature, and 0.4 ammonia mass fraction.

Removal of Tar from Biomass Gasification Process (Biomass Gasification 공정에서 발생하는 Tar 제거연구)

  • Kim, Ju-Hoe;Jo, Young-Min;Kim, Jong-Su;Kim, Sang-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.552-561
    • /
    • 2018
  • Biomass, a carbon-neutral resource, is an alternative energy source for exhaustion of fossil fuel and environmental problems. Most of energy production systems using biomass operate with a thermal chemical conversion method. Amongst them, gasification generates syngas and applies to boilers or engines for the production of heat and electricity. However, Tar could be formed during the production of syngas and it is condensed at low temperature which may cause to clog the pipelines and combustion chamber, ultimately resulting in decrease of process efficiency. Thus this work utilized water and oily materials such as soybean oil, waste cooking oil and mineral oil for scrubbing liquid. The removal efficiency of Tar appeared 97%, 70%, 63% and 30% for soybean oil, waste cooking oil, mineral oil and water respectively.

Thermodynamic Analysis on Hybrid Turbo Expander - Heat Pump System for Natural Gas Pressure Regulation (히트펌프를 적용한 터보팽창기 천연가스 정압기지의 열역학적 분석)

  • Sung, Taehong;Kim, Kyoung Hoon;Han, Sangjo;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.13-20
    • /
    • 2014
  • In natural gas distribution system, gas pressure is regulated correspond to requirement using throttle valve which is releasing huge pressure energy as useless form. The waste pressure can be recovered by using turbo machinery devices such as a turbo expander. In this process, excessive temperature drop occurs due to Joule-Thompson effect during the expansion process. Installing natural gas boiler before or after the turbo expander prevents temperature drop. Fuel cell or gas engine hybrid system further improve the efficiency, but 1~2% of total transporting natural gas is used for operating the hybrid system. In this study, a heat pump system is proposed as a preheating device which can be operated without using transporting natural gas. Thermodynamic analysis on evaporating and condensing temperatures and refrigerants is conducted. Results show that R717 is proper refrigerant for the hybrid system with high COP and low turbine work within the defined operating conditions. In domestic usage in Korea, the heat pump system has more economic feasibility owing to natural gas being imported with a high price of LNG form.

Solid Waste from Swine Wastewater as a Fuel Source for Heat Production

  • Park, Myung-Ho;Kumar, Sanjay;Ra, ChangSix
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.11
    • /
    • pp.1627-1633
    • /
    • 2012
  • This study was to evaluate the feasibility of recycling the solids separated from swine wastewater treatment process as a fuel source for heat production and to provide a data set on the gas emissions and combustion properties. Also, in this study, the heavy metals in ash content were analyzed for its possible use as a fertilizer. Proximate analysis of the solid recovered from the swine wastewater after flocculation with organic polymer showed high calorific (5,330.50 kcal/kg) and low moisture (15.38%) content, indicating that the solid separated from swine wastewater can be used as an alternative fuel source. CO and NOx emissions were found to increase with increasing temperature. Combustion efficiency of the solids was found to be stable (95 to 98%) with varied temperatures. Thermogravimetry (TG) and differential thermal analysis (DTA) showed five thermal effects (four exothermic and one endothermic), and these effects were distinguished in three stages, water evaporation, heterogeneous combustion of hydrocarbons and decomposition reaction. Based on the calorific value and combustion stability results, solid separated from swine manure can be used as an alternative source of fuel, however further research is still warranted regarding regulation of CO and NOx emissions. Furthermore, the heavy metal content in ash was below the legal limits required for its usage as fertilizer.

A Theoretical Study on the Feasibility of Long Distance Heat Transport Network Using Decomposition/Synthesis of Methanol (메탄올의 분해/합성 반응을 이용한 장거리 열수송 네트웤 구축 가능성에 대한 이론적 연구)

  • Jang, In-Sung;An, Ik-Kyoun;Han, Gui-Young;Moon, Seung-Hyun;Park, Sung-Youl;Park, Min-A;Lee, Hoon;Yoon, Seok-Mann
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2007.11a
    • /
    • pp.187-192
    • /
    • 2007
  • A project is being implemented to develop the long distance energy transport technology using the chemical reactions. This project can be classified into three main research categories covering heat recovery reaction, long distance energy transport, and heat generation reaction. In this study, the methanol is selected as a system material since it shows several unique superior characteristics as follows: gaseous state of reactant and product, large heat of reaction, high yields of reaction at relatively low temperature, and also steady and economical supply. Furthermore, it is anticipated that the outcomes of this study can be widely applied to the related industries. A feasibility study was carried out to evaluate the economics of this technology which study was based on the following case: 10,000 households, 15km distance energy transportation, utilization of waste heat from power plant.

  • PDF

Analysis on the Pyrolysis Characteristics of Waste Plastics Using Plug Flow Reactor Model (Plug Flow Reactor 모델을 이용한 폐플라스틱의 열분해 특성 해석)

  • Sangkyu, Choi;Yeonseok, Choi;Yeonwoo, Jeong;Soyoung, Han;Quynh Van, Nguyen
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.12-21
    • /
    • 2022
  • The pyrolysis characteristics of high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP) were analyzed numerically using a 1D plug flow reactor (PFR) model. A lumped kinetic model was selected to simplify the pyrolysis products as wax, oil, and gas. The simulation was performed in the 400-600℃ range, and the plastic pyrolysis and product generation characteristics with respect to time were compared at various temperatures. It was found that plastic pyrolysis accelerates rapidly as the temperature rises. The amounts of the pyrolysis products wax and oil increase and then decrease with time, whereas the amount of gas produced increases continuously. In LDPE pyrolysis, the pyrolysis time was longer than that observed for other plastics at a specified temperature, and the amount of wax generated was the greatest. The maximum mass fraction of oil was obtained in the order of HDPE, PP, and LDPE at a specified temperature, and it decreased with temperature. Although the 1D model adopted in this study has a limitation in that it does not include material transport and heat transfer phenomena, the qualitative results presented herein could provide base data regarding various types of plastic pyrolysis to predict the product characteristics. These results can in turn be used when designing pyrolysis reactors.

Characteristics and Economic Evaluation of a CO2-Capturing Repowering System with Oxy-Fuel Combustion for Utilizing Exhaust Gas of MCFC (MCFC 배기가스를 이용하는 순산소연소 $CO_2$ 회수형 발전시스템의 특성과 경제성 평가)

  • Pak, Pyong-Sik;Lee, Young-Duk;Ahn, Kook-Young;Jeong, Hyun-Il
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2940-2945
    • /
    • 2008
  • The scale of 2.4 MW MCFC was taken to construct a high-efficiency and economical power generation system without CO2 emission into the atmosphere for utilizing its exhaust gas. The conventional steam turbine power generation system (STGS) was evaluated and the net generated power (NGP) was estimated to be only 133 kW and the STGS is not economically feasible. A CO2-caputuring repowering system was proposed, where low temperature steam (LTS) produced at HRSG by using exhaust gas from MCFC is utilized as a main working fluid of a gas turbine, and the temperature of LTS was raised by combusting fuel in a combustor by using pure oxygen, not the air. It has been shown that NGP of the proposed system is 264 kW, and CO2 reduction amount is 608 t-CO2/y, compared to 306 t-CO2/y of STGS. The CO2 reduction cost was estimated to be negligible small, even when the costs of oxygen production and CO2 liquefaction facilities etc. were taken into account.

  • PDF

Tritium radioactivity estimation in cement mortar by heat-extraction and liquid scintillation counting

  • Kang, Ki Joon;Bae, Jun Woo;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3798-3807
    • /
    • 2021
  • Tritium extraction from radioactively contaminated cement mortar samples was performed using heating and liquid scintillation counting methods. Tritiated water molecules (HTO) can be present in contaminated water along with water molecules (H2O). Water is one of the primary constituents of cement mortar dough. Therefore, if tritium is present in cement mortar, the buildings and structures using this cement mortar would be contaminated by tritium. The radioactivity level of the materials in the environment exposed to tritium contamination should be determined for their disposal in accordance with the criteria of low-level radioactive waste disposal facility. For our experiments, the cement mortar samples were heated at different temperature conditions using a high-temperature combustion furnace, and the extracted tritium was collected into a 0.1 M nitric acid solution, which was then mixed with a liquid scintillator to be analyzed in a liquid scintillation counter (LSC). The tritium extraction rate from the cement mortar sample was calculated to be 90.91% and 98.54% corresponding to 9 h of heating at temperatures of 200 ℃ and 400 ℃, respectively. The tritium extraction rate was close to 100% at 400 ℃, although the bulk of cement mortar sample was contaminated by tritium.

Development of High Efficiency Dehumidifiers in low temperature (저온에서 고효율 제습기 개발)

  • Kim, Jong-Ryeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.206-211
    • /
    • 2016
  • Various applications require dry air at low temperature, such automation equipment, semiconductor manufacturing, chemical production lines, and coating processes for the shipbuilding industry. Four evaporators for low temperature (below $0^{\circ}C$) were installed for a dehumidification system. Moist air is cooled sequentially over three evaporators. The first evaporator has an evaporation temperature of $13^{\circ}C$, that of the second evaporator is $5^{\circ}C$, and that of the third evaporator is maintained at $-1.3^{\circ}C$. In the fourth evaporator implantation thereby the moisture contained in the moisture air. A pressure regulator (CPCE 12) is used at this point and is defrosted when the vapor pressure is below a set value. The non-implantation moisture of the air is a heating system that uses the waste heat of a condenser with high temperature. It develops the cooling type's dehumidifier, which is important equipment that prevents the destruction of protein and measures the temperature and humidity at each interval by changing the front air velocity from 1.0 m/s to 4.0 m/s. The cooling capacity was also calculated. The greatest cooling capacity was 1.77 kcal/h for a front air velocity of 2.0 m/s

Heater Design of a Cooling Unit for a Satellite Electro-Optical Payload using a Thermal Analysis (열해석을 이용한 위성 광학탑재체 냉각 장치의 히터설계)

  • Kim, Hui-Kyung;Chang, Su-Young;Choi, Seok-Weon
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.20-28
    • /
    • 2011
  • The electro-optical payload of a low-earth orbit satellite is thermally decoupled with the bus, which supports a payload for a mission operation. The payload has a cooling unit of FPA(Focal Plane Assembly) which has a thermal behavior increasing its temperature instantly during an operation in order to dissipate a waste heat into the space. The FPA cooling unit should include a radiator and heatpipes with a sufficient performance in worst hot condition, and a heater design to maintain its temperature above a minimum allowable temperature in the worst cold condition. In this paper, we analyzed the thermal requirements and the heater design constraints from the thermal analysis results for the current thermal design of the FPA cooling unit and the design elements of the better heater design were found.