• Title/Summary/Keyword: Low Temperature Reaction

Search Result 1,372, Processing Time 0.026 seconds

INFRARED ABSORPTION MEASUREMENT DURING LOW-TEMPERATURE PECVD OF SILICON-OXIDE FILMS

  • Inoue, Yasushi;Sugimura, Hiroyuki;Takai, Osamu
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.297-302
    • /
    • 1999
  • In situ measurement of infrared absorption spectra has been performed during low-temperature plasma-enhanced chemical vapor depositiion of silicon-oxide films using tetramethoxysilane as a silicon source. Several absorption bands due to the reactant molecules are clearly observed before deposition. In the plasma, these bands completely disappear at any oxygen mixing ratio. This result shows that most of the tetramethoxysilane molecules are dissociated in the rf plasma, even C-H bonds. Existence of Si-H bonds in vapor phase and/or on the film surface during deposition has been found by infrared diagnostics. We observed both a decrease in Si-OH absorption and an increase in Si-O-Si after plasma off, which means the dehydration condensation reaction continues after deposition. The rate of this reaction is much slower than the deposition ratio of the films.

  • PDF

Comparative Modeling of Low Temperature Char-CO2 Gasification Reaction of Drayton Coal by Carbon Dioxide Concentration (이산화탄소 농도에 따른 드레이톤 탄의 저온 차-이산화탄소 가스화반응 모델링 비교)

  • Park, Ji Yun;Lee, Do Kyun;Hwang, Soon Cheol;Kim, Sang Kyum;Lee, Sang Heon;Yoon, Soo Kyung;Yoo, Ji Ho;Lee, Si Hyun;Rhee, Young Woo
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.306-312
    • /
    • 2013
  • We investigated the effects of the concentration of carbon dioxide on the char-$CO_2$ gasification reaction under isothermal conditions of $850^{\circ}C$ using the Drayton coal. Potassium carbonate was used to improve the low-temperature gasification reactivity. The enhancement of carbon dioxide concentration increased the gasification rate of char, while gasification rate reached a saturated value at the concentration of 70%. The best $CO_2$ concentration for gasification is determined to be 70%. We compared the shrinking core model (SCM), volumetric reaction model (VRM) and modified volumetric reaction model (MVRM) of the gas-solid reaction models. The correlation coefficient values, by linear regression, of SCM are higher than that of VRM at low concentration. While the correlation coefficients values of VRM are higher than that of SCM at high concentration. The correlation coefficient values of MVRM are the highest than other models at all concentration.

Synthesis, Characterization and Ammonia Decomposition Reaction Activity of Vanadium Oxynitride Obtained from the Reduction/Nitridation of Vanadium Oxide (바나디움 산화물의 환원 및 질화반응으로부터 얻어진 바나디움 산화질화물의 제조, 특성분석 및 암모니아 분해반응에서의 촉매 활성)

  • Yun, Kyung Hee;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.620-629
    • /
    • 2022
  • By varying various experimental conditions such as heating rate, molar hourly space velocity (MHSV), and nitridation reaction temperature, vanadium oxynitride was prepared through temperature programmed reduction/nitridation reaction (TPRN) of vanadium pentoxide and ammonia, and characterization were performed. In order to investigate the physico-chemical properties of the prepared catalyst, N2 adsorption-desorption analysis, X-ray diffraction analysis (XRD), hydrogen temperature programmed reduction (H2-TPR), temperature programmed oxidation (TPO), ammonia temperature programmed desorption (NH3-TPD), transmission electron microscopy (TEM) was performed. Transformation of V2O5 with 5 m2 g-1 low specific surface area by reduction at 340 ℃ to V2O3 showed a high specific surface area value of 115 m2 g-1 by micropore formation. As the nitridation temperature increased beyond that, the specific surface area continued to decrease due to sintering. The nitridation reaction variable that had the greatest influence on the specific surface area was the reaction temperature, and the x + y value of VNxOy of a single phase approached from 1.5 to 1.0 as the nitridation reaction temperature increased. At a high reaction temperature of 680 ℃, the cubic lattice constant a was VN. close to the value. At 680 ℃, the highest nitridation temperature among the experimental conditions, the ammonia conversion rate was 93%, and no deactivation was observed.

Wet Chemical Preparation of Li-rich LiMn$_2$O$_4$ Spinel by Oxalate Precipitation (Oxalate 침전을 이용한 Li-과량 LiMn$_2$O$_4$ Spinel의 습식합성가 분말 특성)

  • 이병우;김세호
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.698-704
    • /
    • 1999
  • Li rich Li1+xMn2-xO4(x=0.07) spinel powders were prepared by an oxalate precipitation of wet chemical methods at temperature lower than $600^{\circ}C$. The FTIR results showed that the powders prepared at $600^{\circ}C$ had high degree of crystal quality comparing with the spinel powders prepared by solid state reaction at 75$0^{\circ}C$ which was the lowest synthesis temperature of the solid state reaction method. The particle size of powders prepared by the oxalate precipitation at $600^{\circ}C$ was smaller than 0.2${\mu}{\textrm}{m}$ and the specific surface area was 11.01 m2/g A heat treatment over 90$0^{\circ}C$ formed second phase in the precipitates. It was shown that there were phase transitions at temperatures. T1,T2 and T2. The transitions involved weight loss and gain during heating and cooling. The low temperature synthesis below $600^{\circ}C$ avoided the second phase formation and the prepared powders showed improved compositional and physical properties for secondary lithium battery applications.

  • PDF

Noble metal catalysts for Water Gas Shift reaction (귀금속계열 WGS 촉매 연구)

  • Lim, Sung-Kwang;Bae, Joong-Myeon;Kim, Sun-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2228-2231
    • /
    • 2007
  • Water gas shift reactor in fuel processing is an important part that converts carbon monoxide into hydrogen. Fuel processing system for PEMFC usually has two stages of WGS reactors, which are high temperature and low temperature shifter. In this study we prepared noble metal catalysts and compared their performances with that of a commercial iron chromium oxide catalyst. Noble metal catalysts and the commercial catalyst showed quite different temperature dependence of carbon monoxide conversion. The conversion of carbon monoxide at the commercial catalyst was very low at medium temperature(${\sim}300^{\circ}C$) and increased rapidly as temperature increased while the conversion at noble metal catalysts was high in the medium temperature range and decreased as temperature increased, which is thermodynamically expected. Their characteristics agreed well with the literature published, and we are accomplishing further study for improvement of the noble metal catalysts.

  • PDF

Low-Temperature Synthesis of Spinel Powders by the Emulsion Technique (MgO-$Al_2O_3$-$SiO_2$계 요업원료의 제조 및 소결특성 -에멜젼법에 의한 Spinel 분체의 저온합성-)

  • 현상훈;이희수;김의수
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.5
    • /
    • pp.661-667
    • /
    • 1990
  • Spinel powders were synthesized at the comparatively low-temperature range(800~90$0^{\circ}C$) by the emulsion-hot kerosene drying method and the effects of kerosene-evaporative conditions on powder characteristics were investigated. In emulsion drying, more unagglomerated and sinterable powders could be synthesized through rapid evaporation of emulsion at the higher kerosene temperature. The completion of formation reaction of spinel observed at the low-temperature range confirmed the high reactivity of powders. The relative theoretical density and the fracture toughness of spinel pellets sintered at 1$650^{\circ}C$ for 4hrs. were 98% and 2.1MN/m3/2, respectively.

  • PDF

Low Temperature Bonding Process of Silicon and Glass using Spin-on Glass (Spin-on Glass를 이용한 실리콘과 유리의 저온 접합 공정)

  • Lee Jae-Hak;Yoo Choong-Don
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.77-86
    • /
    • 2005
  • Low temperature bonding of the silicon and glass using the Spin-on Glass (SOG) has been conducted experimentally to figure out the effects of the SOG solution composition and process variables on bond strength using the Design of Experiment method. In order to achieve the high quality bond interface without rack, sufficient reaction time of the optimal SOG solution composition is needed along with proper pressure and annealing temperature. The shear strength under the optimal SOG solution composition and process condition was higher than that of conventional anodic bonding and similar to that of wafer direct bonding.

Biodiesel Production with Zinc Aluminate Catalysts in a High-Pressure-Fixed-Bed-Reactor (Zinc Aluminate 촉매를 이용한 고압연속식 고정층 반응기에서의 바이오디젤 제조)

  • Vu, Khanh Bao;Phan, Thuy Duong Nguyen;Kim, Sunwook;Shin, Eun Woo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.189-193
    • /
    • 2008
  • In this study, the effect of reaction conditions on the transesterification of soybean oil and methanol was investigated in a high-pressure-fixed-bed-reactor-system with zinc aluminate catalysts. Without catalysts, high-pressure-reaction at $300^{\circ}C$ and 1,200 psi brought 19% yields of methyl esters, which was caused by the approach of reaction condition to supercritical point of methanol. However, except the specific reaction condition, the yields in the reaction with no catalyst were very low below 4.5%. The zinc aluminate was prepared as catalyst by coprecipitation and characterized with $N_2$ gas adsorption/desorption and X-ray diffraction. With catalyst, the effect of the reaction parameters such as temperature, pressure, and molar ratio of reactants on biodiesel production was demonstrated. The higher temperature, pressure, and methanol molar ratio to soybean oil, the more yields of methyl esters. It was proved that among the reaction parameters, the reaction temperature be the most influential variable on methyl ester yields.

Activity test of post-reforming catalyst for removing the ethylene in diesel ATR reformate (디젤 자열개질 가스 내 포함된 $C_2H_4$ 제거를 위한 후개질기 촉매 활성 실험)

  • Yoon, Sang-Ho;Bae, Joong-Myeon;Lee, Sang-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.218-221
    • /
    • 2009
  • Solid oxide fuel cells (SOFCs), as high-temperature fuel cells, have various advantages. In some merits of SOFCs, high temperature operation can lead to the capability for internal reforming, providing fuel flexibility. SOFCs can directly use CH4 and CO as fuels with sufficient steam feeds. However, hydrocarbons heavier than CH4, such as ethylene, ethane, and propane, induce carbon deposition on the Ni-based anodes of SOFCs. In the case of the ethylene steam reforming reaction on a Ni-based catalyst, the rate of carbon deposition is faster than among other hydrocarbons, even aromatics. In the reformates of heavy hydrocarbons (diesel, gasoline, kerosene and JP-8), the concentration of ethylene is usually higher than other low hydrocarbons such as methane, propane and butane. It is importatnt that ethylene in the reformate is removed for stlable operation of SOFCs. A new methodology, termed post-reforming was introduced for removing low hydrocarbons from the reformate gas stream. In this work, activity tests of some post-reforming catalysts, such as CGO-Ru, CGO-Ni, and CGO-Pt, are investigated. CGO-Pt catalyst is not good for removing ethylene due to low conversion of ethylene and low selectivity of ethylene dehydrogenation. The other hand, CGO-Ru and CGO-Ni catalysts show good ethylene conversion, and CGO-Ni catalyst shows the best reaction selectivity of ethylene dehydrogenation.

  • PDF