• Title/Summary/Keyword: Low Temperature Performance

Search Result 2,099, Processing Time 0.032 seconds

Experimental Study on Performance of Air-conditioner with PF Heat Exchanger (PF 열교환기를 적용한 공조기의 성능에 대한 실험연구)

  • Seo, D.N.;Um, Y.S.;Park, K.M.;Lee, S.J.;Kim, D.H.;Kwon, Y.C.
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.525-530
    • /
    • 2008
  • In the present study, the cooling performances of the air-conditioner applied the fin-tube and aluminum PF heat exchangers have been experimentally investigated by using the calorimeter. The experiment is carried out in the conditions of the standard temperature and the low temperature. Fin type of PF heat exchanger is a triangler and squarer form. PF heat exchanger has smaller refrigerant weight and larger capacity and COP han the fin-tube heat exchanger. The performance of PF-2 heat exchanger with the squarer in is more excellent than that of PF-1 heat exchanger with the triangler fin. The high pressure of PF heat exchanger decreases about 7%, compared to the fin-tube heat exchanger. Also, CSPF of the fin-tube and PF heat exchanger is evaluated.

  • PDF

Performance Characteristics of Anode-Supported Tubular Solid Oxide Fuel Cell (연료극 지지체식 원통형 고체산화물 연료전지의 성능 특성)

  • Song Rak-Hyun;Song Keun-Suk
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.368-373
    • /
    • 2004
  • To improve the conventional cathode-supported tubular solid oxide fuel cell (SOFC) from the viewpoint of low cell power density, expensive fabrication process and high operation temperature, the anode-supported tubular solid oxide fuel cell was investigated. The anode tube of Ni-8mol% $Y_2$O$_3$-stabilized $ZrO_2$ (8YSZ) was manufactured by extrusion process, and, the electrolyte of 8YSZ and the multi-layered cathode of $LaSrMnO_3$(LSM)ILSM-YSZ composite/$LaSrCoFeO_3$ were coated on the surface of the anode tube by slurry dip coating process, subsequently. Their cell performances were examined under gases of humidified hydrogen with 3% water and air. In the thermal cycle condition of heating and cooling rates with $3.33^{\circ}C$/min, the anode-supported tubular cell showed an excellent resistance as compared with the electrolyte-supported planar cell. The optimum hydrogen flow rate was evaluated and the air preheating increased the cell performance due to the increased gas temperature inside the cell. In long-term stability test, the single cell indicated a stable performance of 300 mA/$\textrm{cm}^2$ at 0.85 V for 255 hr.

A Study on the Pressure Loss in Helically Coiled Tubes (나선코일 튜브 내에서의 압력손실에 관한 연구)

  • Han, K.I.;Bark, J.U.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.155-165
    • /
    • 1998
  • The resistance coefficient and heat transfer performance are studied for the turbulent water flow in a smooth coiled tube having variable curvature ratios and a corrugated-coiled tube having a ratio of coil to tube diameter of 22. Experiments are carried out for the fully developed turbulent flow of water in tube coils on the uniform wall temperature condition. This work is limited to tube coils of R/a between 22 and 60 and Reynolds numbers from 13000 to 53000. The tube having a ratio of coil to tube diameter of 27 among the 3 smooth tube coils shows the best heat transfer performance. A corrugated-coiled tube(R/a=60) shows more excellent performance than a smooth coiled tub (R/a=60) at a similar curvature ratio. The friction factor f is sensitive to changes in the velocity profile caused by a temperature gradient. Allowance was made for the pressure loss in the short inlet and outlet lengths and due to the presence of the thermocouple inlet and outlet as a result of separate experimental on a straight tube. It is to be expected that the allowance at the exit will be somewhat too low because of secondary flow effects carried over from the coil.

  • PDF

A Comparison of the Heat Transfer Performance of Thermosyphon Using a Straight Groove and a Helical Groove

  • Han Kyuil;Cho Dong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2296-2302
    • /
    • 2005
  • This study is focused on the comparison of heat transfer performance of two thermosyphons having 60 straight and helical internal grooves. Distilled water has been used as working fluid. Liquid fill charge ratio defined by the ratio of working fluid volume to total internal volume of thermosyphon, the inclination angle and operating temperature were used as experimental parameters. The heat flux and heat transfer coefficient are estimated from experimental results. The conclusions of this study may be summarized as follows; Liquid fill charge ratio, inclination angle and geometric shape of grooves were very important factors for the operation of thermosyphon. The optimum liquid fill charge ratio for the best heat flux were $30\%$. The heat transfer performance of helically grooved tube was higher than that of straight grooved tube in low inclination angle (less than $30^{\circ}$), but the results were opposite in high inclination angle (more than $30^{\circ}$). As far as optimum inclination angle concerns, range of $25^{\circ}\~30^{\circ}$ for a helically grooved tube and about $40^{\circ}$ for a straight grooved tube are suggested angles for the best results.

Comparison of Polymer Electrolyte Membrane Fuel Cell performance obtained by 1D and CFD simulations (1D와 CFD(Computational fluid dynamic) 시뮬레이션을 통한 PEMFC(Polymer Electrolyte Membrane Fuel Cell) 성능 비교)

  • Wonwoo Jeon;Sehyeon An;Jaewan Yang;Jiwon Lee;Hyunbin jo;Eunseop Yeom
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.49-56
    • /
    • 2023
  • The Polymer electrolyte membrane fuel cell (PEMFC) operates at ambient temperature as a low-temperature fuel cell. During its operation, voltage losses arise due to factors such as operating conditions and material properties, effecting its performance. Computational simulations of fuel cells can be categorized into 1D simulation and CFD, chosen based on their specific application purposes. In this study, we carried out an analysis validation using 1D geometry and compared its performance with the results from 2D geometry analysis. CFD allows for the representation of pressure, velocity distribution, and fuel mass fraction according to the geometry, enabling the analysis of current density. However, the 1D simulation, simplifying governing equations to reduce time cost, failed to accurately account for fuel distribution and changes in fuel concentration due to fuel cell operations. As a result, it showed unrealistic results in the cell voltage region dominated by concentration loss compared to CFD.

Spalling resistance and mechanical performance of UHPC under high temperature using hybrid natural and artificial fibers

  • Arash K. Pour;Amir Shirkhani;Ehsan Noroozinejad Farsangi
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.177-195
    • /
    • 2024
  • This research plans to investigate the simultaneous impact of bamboo fibers (BF) and steel fibers (SF) on the mechanical and spalling characteristics of ultra-high-performance concrete (UHPC) exposed to high temperatures (HT). To this aim, 25 mixtures were made and assessed. BF was added at five contents of 0, 2.5, 5, 7.5 and 10 kg/m3. Additionally, SF was used at five weight contents: 0%, 1%, 2%, 3% and 4%. Specimens were exposed to temperatures ranging between 25℃ and 800℃. Thus, com-pressive, tensile, and flexural strengths, elastic moduli, mass loss, and permeability were measured. Experiments revealed that the simultaneous use of low BF and SF contents could totally prevent spalling of UHPC, but the use of either SF or BF alone could not prevent spalling at high levels of fibers. Besides, the synergetic positive impact of BF and SF on the spalling resistance of UHPC was by reason of the rise of BF' permeability and the bridging role of SF at HT. Moreover, it was concluded that the use of SF could moderate the adverse influence of BF on the compressive resistance of UHPC.

Effects of Insulation Layer upon the Thermal Behavior of Linear Motors

  • Eun, In-Ung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.896-905
    • /
    • 2003
  • A linear motor has many advantages next to conventional feed mechanisms: high transitional speed and acceleration, high control performance, and good positioning accuracy at high speed. Through the omission of a power transfer element, the linear motor shows no wear and no backlash, has a long lifetime, and is easy to assemble. A disadvantage of the linear motor is low efficiency and resultant high-temperature rise in itself and neighboring structures during operation. This paper presents the thermal behavior of the linear motor as a feed mechanism in machine tools. To improve the thermal behavior, an insulation layer is used. By placing the insulation layer between the primary part and the machine table, both the temperature difference and the temperature fluctuation in the machine table due to a varying motor load are reduced.

Superfluid Shock Tube Facility and Measurement Methods (초유동 충격파관관 장치 및 측정수단)

  • ;H. Nagai;Y. Ueta;K. Yanaka;M. Murakami
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.202-204
    • /
    • 2002
  • The supurfluid shock tube facility has been developed as a versatile tool for experimental research of low-temperature thermo-fluid dynamic phenomena The shock tube is designed to operate with the He II filled test section which is immersed in superfluid helium. The thermo-dynamic phenomena occurred in this facility are measured using pressure transducers, superconductive temperature sensor and visualization method. In this paper, the design and performance of the superfluid shock tube facility and the superconductive temperature sensor is presented.

  • PDF

An Experimental Study of Tire Safety & Economical Efficiency with Respect to Inflation Pressure (공기압에 따른 타이어의 안전성 및 경제성에 관한 실험적 연구)

  • Hong, Seung-Jun;Lee, Ho-Guen
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.8-13
    • /
    • 2010
  • Many vehicles have significantly under-inflated tires, primarily because drivers infrequently check their vehicles' tire pressure. When a tire is used while significantly under-inflated, its sidewalls flex more and the tire temperature increases, increasing stress and the risk of failure. In this study we evaluated tire safety and economical efficiency at various inflation pressure. For tire safety we performed FMVSS indoor durability test, measurement of rolling tire temperature, braking performance at dry/wet road condition, and rolling resistance test for economical efficiency. Results show that low pressure decreases tire durability of both speed-increase condition and load-increase condition. Heat temperature of rolling tire increases as pressure decreases and significantly under-inflated tires cause increase of vehicle's stopping distance at wet road condition. Also Under-inflation increases the rolling resistance of a tire and, correspondingly, decreases vehicle's fuel economy.

Characterization of A Catalystic Gas Sensor for Measuring Heat Content of Natural Gas (천연가스의 열용량을 측정하기 위한 촉매가스센서의 특징)

  • Lee K. Y.;Maclay G. J.;Stetter J. R.
    • 한국가스학회:학술대회논문집
    • /
    • 1997.09a
    • /
    • pp.229-235
    • /
    • 1997
  • A low power (300 mW) catalytic bead combustible gas sensor is developed and utilized with a computer controlled sampling system for measuring heat content of natural gas. The heat content of gas is proportional to the change in the energy required to exposure to the sample of combustible gas. The heat content of natural gas samples ranging 36.30 - 39.88 MJ/$m^3$ is measured in the range of approximately $1\%$ error, which is comparable to its nominal heat content. Each gas has a slightly different curve of sensitivity vs. sensor temperature. Thus there Is no temperature at which all sensitivities are equal. In calibration process the choice of a optimum operating temperature is an important factor that influences the overall performance of the measurement system.

  • PDF