• Title/Summary/Keyword: Low Temperature Performance

Search Result 2,081, Processing Time 0.186 seconds

Fundamental Study for Predicting Ship Resistance Performance Due to Changes in Water Temperature and Salinity in Korea Straits (대한해협에서의 수온 및 염도변화를 고려한 선박의 저항성능 예측을 위한 기초 연구)

  • Seok, Jun;Jin, Song-Han;Park, Jong-Chun;Shin, Myung-Soo;Kim, Sung-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.418-426
    • /
    • 2015
  • Recently, shipping operators have been making efforts to reduce the fuel cost in various ways, such as trim optimization and bulb re-design. Furthermore, IMO restricts the hydro-dioxide emissions to the environment based on the EEDI (Energy Efficiency Design Index), EEOI (Energy Efficiency Operational Indicator), and SEEMP (Ship Energy Efficiency Management Plan). In particular, ship speed is one of the most important factors for calculating the EEDI, which is based on methods suggested by ITTC (International Towing Tank Conference) or ISO (International Standardization Organization). Many shipbuilding companies in Korea have carried out speed trials around the Korea Straits. However, the conditions for these speed trials have not been exactly the same as those for model tests. Therefore, a ship’s speed is corrected by measured environmental data such as the seawater temperature, density, wind, waves, swell, drift, and rudder angle to match the conditions of the model tests. In this study, fundamental research was performed to evaluate the ship resistance performance due to changes in the water temperature and salinity, comparing the ISO method and numerical simulation. A numerical simulation of a KCS (KRISO Container ship) with a free-surface was performed using the commercial software Star-CCM+ under three conditions that were assumed based on the water temperature and salinity data in the Korea Straits. In the simulation results, the resistance increased under low water temperature & high salinity conditions, and it decreased under high water temperature & low salinity conditions. In addition, the ISO method showed the same result as the simulation.

Temperature effect on seismic performance of CBFs equipped with SMA braces

  • Qiu, Canxing;Zhao, Xingnan
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.495-508
    • /
    • 2018
  • Shape memory alloys (SMAs) exhibit superelasticity given the ambient temperature is above the austenite finish temperature threshold, the magnitude of which significantly depends on the metal ingredients though. For the monocrystalline CuAlBe SMAs, their superelasticity was found being maintained even when the ambient temperature is down to $-40^{\circ}C$. Thus this makes such SMAs particularly favorable for outdoor seismic applications, such as the framed structures located in cold regions with substantial temperature oscillation. Due to the thermo-mechanical coupling mechanism, the hysteretic properties of SMAs vary with temperature change, primarily including altered material strength and different damping. Thus, this study adopted the monocrystalline CuAlBe SMAs as the kernel component of the SMA braces. To quantify the seismic response characteristics at various temperatures, a wide temperature range from -40 to $40^{\circ}C$ are considered. The middle temperature, $0^{\circ}C$, is artificially selected to be the reference temperature in the performance comparisons, as well the corresponding material properties are used in the seismic design procedure. Both single-degree-of-freedom systems and a six-story braced frame were numerically analyzed by subjecting them to a suite of earthquake ground motions corresponding to the design basis hazard level. To the frame structures, the analytical results show that temperature variation generates minor influence on deformation and energy demands, whereas low temperatures help to reduce acceleration demands. Further, attributed to the excellent superelasticity of the monocrystalline CuAlBe SMAs, the frames successfully maintain recentering capability without leaving residual deformation upon considered earthquakes, even when the temperature is down to $-40^{\circ}C$.

Optical imaging methods for qualification of superconducting wires

  • Kim, Gracia;Jin, Hye-Jin;Jo, William
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.21-25
    • /
    • 2014
  • In order to develop 2nd generation (2G) high-temperature superconducting (HTS) wires as commercial products, it is necessary to perform a high speed investigation of their superconducting performance. Room-temperature and non-contact optical scanning tools are necessary to verify the microstructure of the superconducting materials, the current flow below the critical temperature, and the critical current density. In this paper, we report our results of an inspection of the electrical transport properties of coated conductors. The samples that we used in our study were highly qualified rare-earth based coated conductors produced via co-evaporation, and $SmBa_2Cu_3O_{7-y}$ (SmBCO) was the superconducting materials used in our studies. A film grown on IBAD-MgO templates shows larger than 400 A/cm at 77 K and a self-field. The local transport properties of the films were investigated by room-temperature imaging by thermal heating. The room-temperature images show structural inhomogeneities on the surface of the films. Bolometric response imaging via low-temperature bolometric microscopy was used to construct the local current mapping at the surface. These results indicate that the non-uniform regions on the surface disturb the current flow, and laser scanning images at room-temperature and at a low-temperature suggest a correlation between the structural properties and transport properties. Thus this method can be effective to evaluate the quality of the coated conductors.

Low-velocity impact performance of the carbon/epoxy plates exposed to the cyclic temperature

  • Fathollah Taheri-Behrooz;Mahdi Torabi
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.305-320
    • /
    • 2023
  • The mechanical properties of polymeric composites are degraded under elevated temperatures due to the effect of temperature on the mechanical behavior of the resin and resin fiber interfaces. In this study, the effect of temperature on the impact response of the carbon fiber reinforced plastics (CFRP) was investigated at low-velocity impact (LVI) using a drop-weight impact tester machine. All the composite plates were fabricated using a vacuum infusion process with a stacking sequence of [45/0_2/-45/90_2]s, and a thickness of 2.9 mm. A group of the specimens was exposed to an environment with a temperature cycling at the range of -30 ℃ to 65 ℃. In addition, three other groups of the specimens were aged at ambient (28 ℃), -30 ℃, and 65 ℃ for ten days. Then all the conditioned specimens were subjected to LVI at three energy levels of 10, 15, and 20 J. To assess the behavior of the damaged composite plates, the force-time, force-displacement, and energy-time diagrams were analyzed at all temperatures. Finally, radiography, optical microscopy, and scanning electron microscopy (SEM) were used to evaluate the effect of the temperature and damages at various impact levels. Based on the results, different energy levels have a similar effect on the LVI behavior of the samples at various temperatures. Delamination, matrix cracking, and fiber failure were the main damage modes. Compared to the samples tested at room temperature, the reduction of temperature to -30 ℃ enhanced the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. The temperature increasing to 65 ℃ increased the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. Applying 200 thermal cycles at the range of -30 ℃ to 65 ℃ led to the formation of fine cracks in the matrix while decreasing the absorbed energy. The maximum contact force is recorded under cyclic temperature as 5.95, 6.51 and 7.14 kN, under impact energy of 10, 15 and 20 J, respectively. As well as, the minimum contact force belongs to the room temperature condition and is reported as 3.93, 4.94 and 5.71 kN, under impact energy of 10, 15 and 20 J, respectively.

Heating Performance Analysis of Building Integrated Geothermal System (건물일체형 지열히트펌프시스템의 난방 성능 분석)

  • Jin, Shangzhen;Lee, Jin-Uk;Kim, Tae-Yeon;Leigh, Seung-Bok
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.206-210
    • /
    • 2012
  • Ground source heat pump is a central heating and cooling system that pumps heat to or from the ground. Building Integrated Geothermal system used in this experiment is one of the Ground Source Heat Pump Systems which utilize energy pile. The purpose of this study is to evaluate heating performance of the system. The building is a low-energy experiment apartment in Yonsei University Songdo Campus and the subject is one of the energy reduced houses in this apartment. In the experiment, indoor temperature, outdoor temperature and the inlet and outlet temperature of ground heat exchanger and subject model, were measured. Then the heat pump's Coefficient of performance(COP) of the heat pump was calculated. As a result, the COP of heat pump is 4-5. Although the depth of the ground heat exchanger in this experiment is shallower than usual heat exchanger, the result of heating performance of this system was good as well.

  • PDF

Review of progress in electromechanical properties of REBCO coated conductors for electric device applications

  • Shin, Hyung-Seop;Dedicatoria, Marlon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.7-16
    • /
    • 2014
  • Rare-earth barium copper oxide (REBCO) coated conductor (CC) tapes have already been commercialized but still possess some issues in terms of manufacturing cost, anisotropic in-field performance, $I_c$ response to mechanical loads such as delamination, homogeneity of current transport property, and production length. Development on improving its performance properties to meet the needs in practical device applications is underway and simplification of the tape's architecture and manufacturing process are also being considered to enhance the performance-cost ratio. As compared to low temperature superconductors (LTS), high temperature superconductor (HTS) REBCO CC tapes provide a much wider range of operating temperature and a higher critical current density at 4.2 K making it more attractive in magnet and coil applications. The superior properties of the REBCO CC tapes under magnetic field have led to the development of superconducting magnets capable of producing field way above 23.5 T. In order to achieve its optimum performance, the electromechanical properties under different deformation modes and magnetic field should be evaluated for practical device design. This paper gives an overview of the effects of mechanical stress/strain on $I_c$ in HTS CC tapes due to uniaxial tension, bending deformation, transverse load, and including the electrical performance of a CC tape joint which were performed by our group at ANU in the last decade.

Influence of the Catalyst Composition on Electrode Performance for Polymer Electrolyte Membrane Fuel Cells (촉매조성이 PEM용 연료전지의 전극특성에 미치는 영향)

  • 임재욱;최대규;류호진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.3
    • /
    • pp.43-48
    • /
    • 2002
  • In this study, high performance electrode catalyst was developed in fabrication of membrane electrode assembly for PEMFCs(Polymer Electrolyte Membrane Fuel Cells). The I-V characteristics were measured to evaluate the influence of Nafion solution and Pt loading amount in the catalyst composition. The electrode characteristics were also investigated with respect to temperature change. The electrode performance was optimized at Nafion 5 wt% and 0.5 mg Pt/$\textrm{cm}^2$ content. The increase in the concentration of Nafion solution resulted in the decrease in electrode performance. At $80^{\circ}C$ of unit cell, I-V characteristics excelled those obtained at lower temperature. There was no difference in performance at low current density, but the improvement of voltage value in higher temperature could be found at high current density.

  • PDF

Studies on Insulation Effect Related with Thin-Plate Design Factors for Reflective Metal Insulation(RMI) of Nuclear Power Plant (금속단열재 박판의 설계인자별 단열성능 영향 연구)

  • Eo, Minhun;Lee, Sungmyung;Jang, Kyehwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.9
    • /
    • pp.350-354
    • /
    • 2016
  • Although fibrous insulations are generally used with resistive insulation type, metallic insulation is proper matter to satisfy low head-loss and equipment life when considering the specific condition, especially for Nuclear power plant. Common insulation is resistance insulation with a low thermal conductivity. but RMI is made of sheet plate with low emissivity and closed air space. Thermal radiation is blocked by stainless steel with low emissivity. Thermal conductivity and thermal convection are blocked by closed air space. This study shows the changes and effects of the heat loss according to shape and method of stacking sheet plates inserted into the insulation and analyzed the most optimized way for thermal insulation performance. The result shows that using sheet plate structure through raised and protruding shape processing was the appropriate model to optimize thermal performance. Additionally, insulating performance of RMI improved by placing the sheet plate in a high temperature region intensively.

A Study on Thermal Environmental Performance Test of the Rotary Compressor Stirling Cryocooler (회전압축기형 스털링 냉동기의 열환경 성능시험에 관한 연구)

  • Park, Seong-Je;Hong, Yong-Ju;Kim, Hyo-Bong;Kimm, Dae-Woong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1953-1958
    • /
    • 2007
  • This paper presents the results of a series of performance tests for the integral Stirling cryocooler. Infrared sensor systems incorporating cryocoolers are required to be qualified to the appropriate environmental specification. Integral Stirling cryocooler for thermal imaging system have matured to the stage of undergoing formal qualification test program. The thermal environmental test of the Stirling cryocooler is presented in this paper. We performed that low and high temperature keeping test from $-40^{\circ}C$ to $+71^{\circ}C$ and operating test at high and low temperature cyclic range with acceptance tests performed at scheduled intervals. Cooldown time to 80K and steady state input power at 80K were determined as a function of cooler components temperatures at the compressor, hot end and cold tip. Tests performed on this cooler have been successful with a measured cooldown time to 80K of less than 5 minutes 24seconds for $71^{\circ}C$ ambient temperature with input power of 11W

  • PDF

Contractible Beat Pipe for Conduction Cooled Superconducting Magnets

  • Kim, Seokho;Sangkwon Jeong;Jin, Hong-Beom;Kideok Sim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.76-80
    • /
    • 2003
  • A contractible heat pipe is designed and tested to improve cooling performance of conduction cooled superconducting magnet. When the heat pipe temperature drops below the triple point temperature, heat pipe working fluid freezes to create low pressure. From this moment the heat pipe does net work any more (OFF state) and it just works as a heat leak path when the temperature of the first stage is higher than that of the second stage. Considering small cooling capacity of the second stage around 4.2 K, the conduction loss is not negligible. Therefore, the contractible heat pipe, made of a metal bellows and copper tubes, was considered to eliminate the conduction loss. Nitrogen and argon are as working fluid of heat pipe. The copper block is cooled down with these heat pipe and the cooling performance for each heat pipe is compared. At off state, the bellows is contracted due to the low pressure of heat pipe and the evaporator section of the heat pipe is detached about 3 mm from the second stage cold head of the cryocooler. In this way, we tan eliminate the conduction loss through the heat pipe wall.