• Title/Summary/Keyword: Low Temperature Performance

Search Result 2,085, Processing Time 0.036 seconds

A Comparative Study of the Cold Power Generation Systems for LNG Terminal (LNG 인수기지용 냉열발전 시스템 비교 연구)

  • 김동수;박영무
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.34-41
    • /
    • 1996
  • The heat of evaporation (cold energy) of LNG is the energy consumed in the production of LNG. This energy amounts to 14% of the NG. In Pyungtak LNG terminal, it is about 96 MW in 1993. In order to utilize the cold energy, the cold power generation systems are investigated: The Rankine cycle using the low temperature energy, the partial expansion cycle using the pressure energy, and the Linde process which is a combined cycle of the Rankine and the partial direct expansion cycle. The commercial simulator, ASPEN Plus, is used. The conceptual design data are obtained from the current facilities of the Pyungtak LNG terminal. The performances of three systems are evaluated. The amount of electric power ranges iron 3 MW to 6MW. The optimum energy efficiency is about 37%. The optimum design conditions are obtained for the partial direct expansion (PDE) cycle. The performance of the PDE cycle is supposed to be comparable to that of the Rankine cycle if the areas of the total heat exchanger of the both cycle are equal.

  • PDF

A Study of Battery Charging Time for Efficient Operation of Fuel Cell Hybrid Vehicle (연료전지 하이브리드 차량의 효율적인 작동을 위한 배터리 충전 시기에 대한 연구)

  • Jin, Wei;Kwon, Oh-Jung;Jo, In-Su;Hyun, Deok-Su;Cheon, Seung-Ho;Oh, Byeong-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.1
    • /
    • pp.38-44
    • /
    • 2009
  • Recently, the research focused on fuel cell hybrid vehicles (FCHVs) is becoming an attractive solution due to environmental pollution generated by fossil fuel vehicles. The proper energy control strategy will result in extending the fuel cell lifetime, increasing of energy efficiency and an improvement of vehicle performance. Battery state of charge (SoC) is an important quantity and the estimation of the SoC is also the basis of the energy control strategy for hybrid electric vehicles. Estimating the battery's SoC is complicated by the fact that the SoC depends on many factors such as temperature, battery capacitance and internal resistance. In this paper, battery charging time estimated by SoC is studied by using the speed response and current response. Hybrid system is consist of a fuel cell unit and a battery in series connection. For experiment, speed response of vehicle and current response of battery were determined under different state of charge. As the results, the optimal battery charging time can be estimated. Current response time was faster than RPM response time at low speed and vice versa at high speed.

Importance of Green Density of Nanoparticle Precursor Film in Microstructural Development and Photovoltaic Properties of CuInSe2 Thin Films

  • Hwang, Yoonjung;Lim, Ye Seul;Lee, Byung-Seok;Park, Young-Il;Lee, Doh-Kwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.471.2-471.2
    • /
    • 2014
  • We demonstrate here that an improvement in precursor film density (green density) leads to a great enhancement in the photovoltaic performance of CuInSe2 (CISe) thin film solar cells fabricated with Cu-In nanoparticle precursor films via chemical solution deposition. A cold-isostatic pressing (CIP) technique was applied to uniformly compress the precursor film over the entire surface (measuring 3~4 cm2) and was found to increase its relative density (particle packing density) by ca. 20%, which resulted in an appreciable improvement in the microstructural features of the sintered CISe film in terms of lower porosity, reduced grain boundaries, and a more uniform surface morphology. The low-bandgap (Eg=1.0 eV) CISe PV devices with the CIP-treated film exhibited greatly enhanced open-circuit voltage (VOC, from 0.265 V to 0.413 V) and fill factor (FF, from 0.34 to 0.55), as compared to the control devices. As a consequence, an almost 3-fold increase in the average power conversion efficiency, 3.0 to 8.2% (with the highest value of 9.02%), was realized without an anti-reflection coating. A diode analysis revealed that the enhanced VOC and FF were essentially attributed to the reduced reverse saturation current density (j0) and diode ideality factor (n). This is associated with the suppressed recombination, likely due to the reduction in recombination sites such as grain/air surfaces (pores), inter-granular interfaces, and defective CISe/CdS junctions in the CIP-treated device. From the temperature dependences of VOC, it was confirmed that the CIP-treated devices suffer less from interface recombination.

  • PDF

CO Gas Sensing Characteristics of Nanostructured ZnO Thin Films (산화아연 나노구조 박막의 일산화탄소 가스 감지 특성)

  • Hung, Nguyen Le;Kim, Hyo-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.235-240
    • /
    • 2010
  • We investigated the carbon monoxide (CO) gas-sensing properties of nanostructured Al-doped zinc oxide thin films deposited on self-assembled Au nanodots (ZnO/Au thin films). The Al-doped ZnO thin film was deposited onto the structure by rf sputtering, resulting in a gas-sensing element comprising a ZnO-based active layer with an embedded Pt/Ti electrode covered by the self-assembled Au nanodots. Prior to the growth of the active ZnO layer, the Au nanodots were formed via annealing a thin Au layer with a thickness of 2 nm at a moderate temperature of $500^{\circ}C$. It was found that the ZnO/Au nanostructured thin film gas sensors showed a high maximum sensitivity to CO gas at $250^{\circ}C$ and a low CO detection limit of 5 ppm in dry air. Furthermore, the ZnO/Au thin film CO gas sensors exhibited fast response and recovery behaviors. The observed excellent CO gas-sensing properties of the nanostructured ZnO/Au thin films can be ascribed to the Au nanodots, acting as both a nucleation layer for the formation of the ZnO nanostructure and a catalyst in the CO surface reaction. These results suggest that the ZnO thin films deposited on self-assembled Au nanodots are promising for practical high-performance CO gas sensors.

A Study on the Cleaning Efficiency using the d-Limonene Oil Extracted in Wasted Mandarin Peels (폐감률피에서 추출한 limonene 오일의 세정성에 관한 연구)

  • Song, Min-Kyung;Oh, Eun-Ha;Im, Ho-Sub;Kim, Yoon-Shin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.107-113
    • /
    • 2010
  • The object of this research is to conform of practicable possibility and recycling of producing junk after citrus fruits is processed. With extracting d-limonene oil that have 70~90% a component of oil out of junk citrus peel, making certain the about 12000ppm concentration of it. Limonene derived from citrus in jeju using conventional synthetic detergents can be replaced with the development of environmentally friendly natural detergent investigated the possibility. Mostly due to ocean dumping, disposal and cause environmental problems by recycling natural citrus cleaner alternative to the research conducted on the possibility. Cleaning efficiency with temperature did not affect the largest concentrations were able to identify the difference between cleaning efficiency. At least 10% of the d-limonene oil could be from the cleaning performance, increasing the concentration of the cleaning efficiency was increased in size. Ultrasonic is very high removal efficiency under the conditions shown in the cause of pure self-generated ultrasonic cleaning power as co-effects of d-limonene oil appears to chemical cleaning effect of ultrasonic cavitation occurs in the physical cleaning effect due to a combination of synergistic stability is maximized by low concentrations of d-limonene oil in a short time showed an excellent cleaning ability. Having the ability of cleaning at the same time, considering the side recycling in the junk citrus peels reflects possibility of basic materials utility eco-friendly in the skin soap, bath soap, cosmetics etc, through ability of exclusion a contaminant in based cleaning effect(EC) it can prospect substitution effect environmentally in the pre existence synthetic detergents.

Torque Measurement of Rotating Shaft Using Fiber Bragg Grating Sensors and Rotary Optical Coupler (광섬유격자센서와 회전광학커플러를 사용한 새로운 회전축의 토크 측정방법)

  • Lee, Jong-Min;Hwang, Yo-Ha
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1195-1200
    • /
    • 2007
  • Torque of a rotating shaft has been mostly measured by strain gages combined with either a slip ring or telemetry. However, these methods have severe inherent problems like low S/N ratio, high cost, limited number of channels and difficult installation. In this paper, a new method using FBG(fiber bragg grating) sensors and a rotary optical coupler for online non-contact torque monitoring is suggested. FBG sensor can measure both strain and temperature, and has much batter characteristics than those of a strain gage. A rotary optical coupler is a optical connecting device between a rotating shaft and stationary side without any physical contact. It has been devised for transmitting light between a rotating optical fiber and a stationary optical fiber. The proposed method uses this rotary optical coupler to connect FBG sensors on the rotating shaft to instruments at stationary side. And a reference FBG sensor is also applied to compensate the insertion loss change of the rotary optical coupler due to rotation. Three FBG sensors have been fabricated in a single optical fiber. Two FBG sensors are attached on the shaft surface to measure torque and one sensor is installed at the shaft center to compensate the insertion loss change. The torque of a rotating shaft has been successfully measured by the suggested method proving its superior performance potential.

Evaluation of Mungbean Genotypes Based on Yield Stability and Reaction to Mungbean Yellow Mosaic Virus Disease

  • Alam, A.K.M. Mahbubul;Somta, Prakit;Jompuk, Choosak;Chatwachirawong, Prasert;Srinives, Peerasak
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.261-268
    • /
    • 2014
  • This work was conducted to identify mungbean genotypes showing yield stability and resistance to mungbean yellow mosaic virus (MYMV) disease. Sixteen genotypes were evaluated in a randomized complete block design with two replications for two years (2011 and 2012) at three locations (Gazipur, Ishurdi and Madaripur) of the Bangladesh Agricultural Research Institute. An analysis of variance exhibited significant effects of genotype (G), environment (E), and genotype ${\times}$ environment ($G{\times}E$) on grain yield. Among eight agronomic characters, the principal component 1 (PC1) was always higher than the PC2. Considering $G{\times}E$ interaction, BM6 was the best genotype at all three locations in both years. Based on grain yield and stability performance, BM6 ranked first while the worst performing genotypes were BM1 and G10. Based on discrimination and representation, Gazipur was identified as an ideal environment for these mungbeans. Relationship between soil-plant analysis developments (SPAD) value was positive with yield but negative with MYMV severity. BM6, G1 and G2 were considered as promising sources of resistance for low disease score and stable response across the environments. The environment proved to have an influence on MYMV infection under natural infestation. A positive correlation was observed between disease score and the temperature under natural growing condition.

A Study on the Bonding Performance of COG Bonding Process (COG 본딩의 접합 특성에 관한 연구)

  • Choi, Young-Jae;Nam, Sung-Ho;Kim, Kyeong-Tae;Yang, Keun-Hyuk;Lee, Seok-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.28-35
    • /
    • 2010
  • In the display industry, COG bonding method is being applied to production of LCD panels that are used for mobile phones and monitors, and is one of the mounting methods optimized to compete with the trend of ultra small, ultra thin and low cost of display. In COG bonding process, electrical characteristics such as contact resistance, insulation property, etc and mechanical characteristics such as bonding strength, etc depend on properties of conductive particles and epoxy resin along with ACF materials used for COG by manufacturers. As the properties of such materials have close relation to optimization of bonding conditions such as temperature, pressure, time, etc in COG bonding process, it is requested to carry out an in-depth study on characteristics of COG bonding, based on which development of bonding process equipment shall be processed. In this study were analyzed the characteristics of COG bonding process, performed the analysis and reliability evaluation on electrical and mechanical characteristics of COG bonding using ACF to find optimum bonding conditions for ACF, and performed the experiment on bonding characteristics regarding fine pitch to understand the affection on finer pitch in COG bonding. It was found that it is difficult to find optimum conditions because it is more difficult to perform alignment as the pitch becomes finer, but only if alignment has been made, it becomes similar to optimum conditions in general COG bonding regardless of pitch intervals.

Treatment of palm oil mill effluent using 2 stage reactors combined anaerobic hybrid reactor and anaerobic attached growth reactor (혼합공정과 부착성장공정을 조합한 2단계 혐기 조합공정에서 palm oil mill effluent의 처리)

  • Shin, Chang-Ha;Son, Sung-Min;Jeong, Joo-Young;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.21-29
    • /
    • 2013
  • Present study was conducted to evaluate the performance of Anaerobic Hybrid Reactor (AHR) combined with two types of anaerobic attached growth reactors at mesophilic temperature ($37^{\circ}C$). The reactor was operated at the influent substrate condition of 19,400 mg/L soluble chemical oxygen demand (sCOD). The organic loading rate (OLR) and flow rate were varied in the range of $9.5{\sim}22.5kg/m^3$. day and 10.6 ~ 26.0 L/day respectively since start-up was done. The COD removal efficiency of 93 % was measured at the OLR of $14kg/m^3$. day in AHR. However a reduction in removal efficiency to as low as 85 % could have been related to a combined effect of high concentration suspended solids (SS) concentration over 3,800 mg/L. On the other hand the total COD removal efficiencies were measured to be 96.3 % and 96.2 % for AHR+APF and AHR+ADF respectively. The pH of the POME was adjusted to neutral range by using sodium bicarbonate at the initial stages of the reactor feed, later stages pH adjustment was not required as the pH was maintained in the desired neutral range due to self-buffering capacity of the reactor. The reactor proved to be economically acceptable and operationally stable. The biogas was measured to have $CH_4$ and $CO_2$ with a ratio of 35:65, and methane gas production rate was estimated to be $0.17{\sim}10.269L\;CH_4/g\;COD_{removed}$.

Rear Surface Passivation with Al2O3 Layer by Reactive Magnetron Sputtering for High-Efficiency Silicon Solar Cell

  • Moon, Sun-Woo;Kim, Eun-Kyeom;Park, Won-Woong;Jeon, Jun-Hong;Choi, Jin-Young;Kim, Dong-Hwan;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.211-211
    • /
    • 2012
  • The electrical loss of the photo-generated carriers is dominated by the recombination at the metal- semiconductor interface. In order to enhance the performance of the solar cells, many studies have been performed on the surface treatment with passivation layer like SiN, SiO2, Al2O3, and a-Si:H. In this work, Al2O3 thin films were investigated to reduce recombination at surface. The Al2O3 thin films have two advantages, such as good passivation properties and back surface field (BSF) effect at rear surface. It is usually deposited by atomic layer deposition (ALD) technique. However, ALD process is a very expensive process and it has rather low deposition rate. In this study, the ICP-assisted reactive magnetron sputtering method was used to deposit Al2O3 thin films. For optimization of the properties of the Al2O3 thin film, various fabrication conditions were controlled, such as ICP RF power, substrate bias voltage and deposition temperature, and argon to oxygen ratio. Chemical states and atomic concentration ratio were analyzed by x-ray photoelectron spectroscopy (XPS). In order to investigate the electrical properties, Al/(Al2O3 or SiO2,/Al2O3)/Si (MIS) devices were fabricated and characterized using the C-V measurement technique (HP 4284A). The detailed characteristics of the Al2O3 passivation thin films manufactured by ICP-assisted reactive magnetron sputtering technique will be shown and discussed.

  • PDF