• 제목/요약/키워드: Low Temperature Co-Fired Ceramics (LTCC)

검색결과 66건 처리시간 0.029초

LTCC 를 이용한 SnO2 가스 센서 ([ SnO2 ] Gas Sensors Using LTCC (Low Temperature Co-fired Ceramics))

  • 조평석;강종윤;김선중;김진상;윤석진;;이종흔
    • 한국재료학회지
    • /
    • 제18권2호
    • /
    • pp.69-72
    • /
    • 2008
  • A sensor element array for combinatorial solution deposition research was fabricated using LTCC (Low-temperature Co-fired Ceramics). The designed LTCC was co-fired at $800^{\circ}C$ for 1 hour after lamination at $70^{\circ}C$ under 3000 psi for 30 minutes. $SnO_2$ sol was prepared by a hydrothermal method at $200^{\circ}C$ for 3 hours. Tin chloride and ammonium carbonate were used as raw materials and the ammonia solution was added to a Teflon jar. 20 droplets of $SnO_2$ sol were deposited onto a LTCC sensor element and this was heat treated at $600^{\circ}C$ for 5 hours. The gas sensitivity ($S\;=\;R_a/R_g$) values of the $SnO_2$ sensor and 0.04 wt% Pd-added $SnO_2$ sensor were measured. The 0.04 wt% Pd-added $SnO_2$ sensor showed higher sensitivity (S = 8.1) compared to the $SnO_2$ sensor (S = 5.95) to 200 ppm $CH_3COCH_3$ at $400^{\circ}C$.

LTCC 공정 중 적층 및 소결이 유전율과 회로 형상에 미치는 영향 (Influence of Laminating and Sintering Condition on Permittivity and Shrinkage During LTCC Process)

  • 정명식;황상현;정형욱;임성한;오수익
    • 소성∙가공
    • /
    • 제16권5호통권95호
    • /
    • pp.396-400
    • /
    • 2007
  • LTCC(Low Temperature Co-fired Ceramic) which offers a good performance to produce multilayer structures with electronic circuits and components has emerged as an attractive technology in the electronic packaging industry. In LTCC module fabrication process, the lamination and the sintering are very important processes and affect the electrical characteristics of the final products because the processes change the permittivity of ceramics and the dimension of the circuit patterns which have influences on electronic properties. This paper discusses the influence of lamination pressure and sintering temperature on the permittivity and the dimensional change of LTCC products. In the present investigation, it is shown that the permittivity increases along with increasing of the lamination pressure and the sintering temperature.

LTCC 공정 중 적층 및 소결이 유전율과 회로 형상에 미치는 영향 (Influence of laminating and sintering condition on permittivity and shrinkage during LTCC process)

  • 정명식;황상현;정형욱;임성한;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.67-70
    • /
    • 2007
  • LTCC (Low Temperature Co-fired Ceramic) has been emerged as a promising technology in packaging industry. In this technology the lamination and the sintering process are very important because they change the permittivity of ceramics and the dimension of metal pattern which have influences on electric property. In this paper we studied on influence of the permittivity and the dimension change by lamination pressure and sintering temperature of LTCC process. As a results, permittivity increase along with increasing of lamination pressure and sintering temperature.

  • PDF

The effect of thickness and operation temperature on Ga doped ZnO thin film NOx gas sensor

  • 황현석;여동훈;김종희;송준태;김정호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.365-365
    • /
    • 2008
  • In this work, Ga-doped ZnO (GZO) thin films for NOx gas sensor application were deposited on low temperature co-fired ceramics (LTCC) substrates, by RF magnetron sputtering method. The LTCC substrate is one of promising materials for this application since it has many advantages (e.g., low cost production, high manufacturing yields and easy realizing 3D structure etc.). The LTCC substrates with thickness of 400 pm were fabricated by laminating 12 green tapes which consist of alumina and glass particle in an organic binder. The structural properties of the fabricated GZO thin films with different thickness are analyzed by X-ray diffraction method (XRD) and field emission scanning electron microscope (FESEM). The GZO gas sensors are tested by gas measurement system under varing operation temperature and show good performance to the NOx gas in sensitivity and response time.

  • PDF

LTCC/Kovar 간의 Brazing 특성 연구 (Study on the Brazing Characteristics of LTCC/Kovar)

  • 이우성;조현민;임욱;유찬세;이영신;강남기
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2000년도 추계 기술심포지움 논문집
    • /
    • pp.57-57
    • /
    • 2000
  • 본 논문에서는 MCM 및 패키지의 Lid로 사용되는 합금인 Kovar (Fe-Ni-Co alloy) 와 LTCC (Low Temperature Co-fired Ceramics) 간의 Brazing 특성을 연구하였다. 기존에 사용되고 있는 알루미나 패키지의 경우, 주로 80$0^{\circ}C$ 이상의 온도에서 Brazing을 실시하고 있으며, 조성은 Ag-Cu 계열을 사용하고 있다. 하지만, LTCC 의 경우, 소결온도가 85$0^{\circ}C$ 내외로서 기존의 방법을 그대로 적용하기는 어려움이 있다. 또한 Brazing 특성에 따른 접착 강도는 Brazing Alloy 의 영향뿐만 아니라 LTCC 와 전도체 전극사이의 Metallization 에 크게 영향을 받는다. 따라서, 본 논문에서는 Brazing Alloy의 종류 (Ag-Cu, Au-Sn) 및 Brazing 조건에 따른 Brazing 특성뿐만 아니라, 전도체 전극내 유리질 함량에 따른 Brazing 특성을 평가하여 LTCC/Kovar 간의 최적의 Brazing 조건을 구현하고자 하였다.

  • PDF

'LTCC를 소재로 하는 마이크로 리포머의 최적 설계에 관한 연구: (다양한 채널구조에 따른 성능변화 고찰)' (A Study on the Optimum Design for LTCC Micro-Reformer: (Performance Evaluation of Various Flow Channel Structures)

  • 정찬화;오정훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.551-552
    • /
    • 2006
  • The miniature fuel cells have emerged as a promising power source for applications such as cellular phones, small digital devices, and autonomous sensors to embedded monitors or to micro-electro mechanical system (MEMS) devices. Several chemicals run candidate at a fuel in those systems, such as hydrogen. methanol, ethanol, acetic acid, and di-methyl ether (DME). Among them, hydrogen shows most efficient fuel performance. However, there are some difficulties in practical application for portable power sources. Therefore, more recently, there have been many efforts for development of micro-reformer to operate highly efficient micro fuel cells with liquid fuels such as methanol, ethanol, and DME In our experiments, we have integrated a micro-fuel processor system using low temperature co-fired ceramics (LTCC) materials. Our integrated micro-fuel processor system is containing embedded heaters, cavities, and 3D structures of micro- channels within LTCC layers for embedding catalysts (cf. Figs. 1 and 2). In the micro-channels of LTCC, we have loaded $CuO/ZnO/Al_2O_3$ catalysts using several different coating methods such as powder packing or spraying, dipping, and washing of catalyst slurry.

  • PDF

Ga이 첨가된 ZnO 박막의 가스센서로의 응용 연구 (Ga doped ZnO Thin Films for Gas Sensor Application)

  • 황현석;여동훈;김종희;송준태
    • 한국전기전자재료학회논문지
    • /
    • 제21권6호
    • /
    • pp.499-502
    • /
    • 2008
  • In this work, Ga-doped ZnO (GZO) thin films for gas sensor application were deposited on low temperature co-fired ceramics (LTCC) substrates, by RF magnetron sputtering method. The LTCC substrate is one of promising materials for this application since it has many advantages (e.g., low cost production, high manufacturing yields and easy realizing 3D structure etc.). The LTCC substrates with thickness of $400\;{\mu}m$ were fabricated by laminating 12 green tapes which consist of alumina and glass particle in an organic binder. The structural properties of the fabricated GZO thin film with thickness of 50 nm is analyzed by X-ray diffraction method (XRD) and field emission scanning electron microscope (FESEM). The film shows good adhesion to the substrate. The GZO gas sensors are tested by gas measurement system and show fast response and recovery characteristics to $NO_x$ gas that is 27.2 and 27.9 sec, recpectively.

CaZr(BO3)2 세라믹스의 마이크로웨이브 유전특성 (Microwave Dielectric Properties of CaZr(BO3)2 Ceramics)

  • 남명화;김효태;김종희;남산
    • 한국세라믹학회지
    • /
    • 제44권5호
    • /
    • pp.173-178
    • /
    • 2007
  • The microstructure and microwave dielectric properties of dolomite type borates, $CaZr(BO_3)_2$ ceramics prepared by conventional mixed oxide method were explored. The sintering temperature of $CaZr(BO_3)_2$ ceramics could be reduced from $1150^{\circ}C\;to\;925^{\circ}C$ with little amount of sintering additives. Microwave dielectric properties of 3 wt% $Bi_2O_3-CuO$ added $CaZr(BO_3)_2$ ceramics sintered at $925^{\circ}C$ were $K{\approx}10.4,\;Q{\times}f{\approx}80,000GHz\;and\;TCF{\approx}+2ppm/^{\circ}C$. Thus obtained LTCC tape was co-fired with Ag paste for compatibility test and revealed no sign of Ag reaction with the ceramics. Therefore, $CaZr(BO_3)_2$ ceramics is considered as a possible candidate material for low temperature co-fired multilayer devices.

LTCC 기판상에 증착한 GZO 가스 센싱 박막의 두께 의존 특성 연구 (Thickness Dependence of GZO Gas Sensing Films Deposited on LTCC Substrates)

  • 황현석
    • 한국전기전자재료학회논문지
    • /
    • 제24권3호
    • /
    • pp.215-218
    • /
    • 2011
  • A novel design of gas sensor using Ga-doped ZnO (GZO) thin films which are deposited on low temperature co-fired ceramic (LTCC) substrates is presented. The LTCC substrates with thickness of 400 ${\mu}m$ are fabricated by laminating 12 green tapes which consist of alumina and glass particle in an organic binder. The GZO thin films with different thickness are deposited on LTCC substrates, by RF magnetron sputtering method. The microstructure and sensing properties of GZO gas sensing films are analyzed as a function of the film thickness. The films are well crystallized in the hexagonal (wurzite) structure with increasing thickness. The maximum sensitivity of 3.49 is obtained at 100 nm film thickness and the fastest 90% response time of 27.2 sec is obtained at 50 nm film thickness for the operating temperature of $400^{\circ}C$ to the $NO_2$ gas.

LTCC 기판상에 증착한 PZT 박막의 특성 향상에 관한 연구 (Improvement of the Characteristics of PZT Thin Films deposited on LTCC Substrates)

  • 황현석;강현일
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권1호
    • /
    • pp.245-248
    • /
    • 2012
  • 본 논문에서는 실리콘 기반의 기술과 차별화하여 저온동시소성세라믹 (LTCC) 기판을 이용하여 대표적 압전물질인 PZT 박막의 최적의 증착조건을 연구하였다. LTCC 기술은 실리콘 기반의 기술에 비하여 낮은 생산 단가, 높은 수율, 3차원 구조물의 용이한 제작성 등으로 인하여 센서 및 액추에이터와 같은 10 um ~ 수백 um 정도의 중규모 디바이스를 제작하는데 있어서 중요한 역할을 담당하고 있다. LTCC 기판은 NEG사의 MLS 22C 상용 파우더를 이용하여 100 um 두께의 그린쉬트를 적층하고 동시소결하여 400 um 두께로 제작하였다. 제작한 기판위에 Pt/Ti 하부전극을 증착하고 RF 마그네트론 스퍼터링 방법을 이용하여 PZT 박막의 증착조건을 연구하였다. 증착조건으로는 RF 전력과 아르곤과 산소 가스비를 가변하여 실시하였으며, XRD와 EDS를 사용하여 박막의 결정성 및 성분을 분석하였다. 실험을 통하여 얻어진 최적의 증착조건은 RF 전력 125W, 아르곤과 산소비 15:5에서 가장 우수한 특성을 나타내는 것을 확인하였다.