• Title/Summary/Keyword: Low Surface Tension

Search Result 201, Processing Time 0.025 seconds

Development of Friction Reduction Method between Piston Ring and Cylinder Liner (피스톤 링과 실린더 라이너에서의 마찰저감 기술개발)

  • 김완호;차금환;김대은;임윤철
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.37-43
    • /
    • 1998
  • The friction loss between piston rings and cylinder liner is due to the tension of the piston rings. Lubricant is usually supplied to reduce the friction. However, the sliding speed of the piston varies during the reciprocating cycle and is very low near TDC(Top Dead Center)/BDC(Bottom Dead Center), where the hydrodynamic lubrication cannot be sustained. Since the lubrication regime is shifted from the hydrodynamic to the boundary lubrication near TDC/BDC, wear particles are easily generated so that the friction loss becomes bigger and bigger due to the plowing effect of wear particles. In this study, for the purpose of reducing the friction loss, an undulated surface is adopted to the cylinder liner to trap wear particles. The friction force variations, which are measured by strain gaged, show that the concept of undulated surface is one of the promising methods to effectively reduce the friction between piston rings and cylinder liner.

Design of Structured Surfaces for Directional Mobility of Droplets

  • Osada, Takehito;Kaneko, Arata;Moronuki, Nobuyuki;Kawaguchi, Tomoyo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.13-17
    • /
    • 2008
  • This paper deals with the directional mobility of droplets on structured surfaces. Structured surfaces were micro-patterned with rectangular lines and spaces of varying pitch and height in the sub-millimeter range. The material used was polydimethylsiloxane, which is hydrophobic and wettable by oil. First, we studied the effect of the structural design on the sliding angle of pure water or oil through experiments. For pure water droplets, we found that a wider pitch enhanced the directionality. On the other hand, oil droplets spread along the groove because of their low surface tension and strong capillary force. The directionality of the sliding angle of oil droplets was larger than that of pure water, especially when the groove was narrower and deeper. Second, we poured a large amount of liquid on the structure and evaluated the removal rate on the tilted surface. We found that a parallel structure enhanced the liquid mobility for both pure water and oil.

Wetting Properties of Biopolyester Films Prepared by Thermo-Compression Method

  • Rhim, Jong-Whan;Hong, Seok-In
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.234-237
    • /
    • 2007
  • Water resistance of three biopolyester films, such as poly-L-lactate (PLA), poly-hydroxybutyrate-co-valerate (PHBV), and Ecoflex, and low density polyethylene (LDPE) film was investigated by measuring contact angle of various probe liquids on the films. The properties measured were initial contact angle of water, dynamic change of the water contact angle with time, and the critical surface energy of the films. Water contact angle of the biopolyester films ($57.62-68.76^{\circ}$) was lower than that of LDPE film ($85.19^{\circ}$) indicating biopolyester films are less hydrophobic. The result of dynamic change of water contact angle also showed that the biopolyester films are less water resistant than LDPE film, but much more water resistant than cellulose-based packaging materials. Apparent critical surface energy for the biopolyester films (35.15-38.55 mN/m) was higher than that of LDPE film (28.59 mN/m) indicating LDPE film is more hydrophobic.

Development of Three Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part I Theoretical Background and Experimental Studies (극한지용 고장력강의 평균 응력 삼축비 및 평균 정규 로드 파라메터를 고려한 3차원 파단 변형률 평면 개발: 제1부 이론적 배경과 실험적 연구)

  • Chong, Joonmo;Park, Sung-Ju;Kim, Younghun
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.445-453
    • /
    • 2015
  • The stress triaxiality and lode angle are known to be most dominant fracture parameters in ductile materials. This paper proposes a three-dimensional failure strain surface for a ductile steel, called a low-temperature high-tensile steel (EH36), using average stress triaxiality and average normalized lode parameter, along with briefly introducing their theoretical background. It is an extension of previous works by Choung et al. (2011; 2012; 2014a; 2014b) and Choung and Nam (2013), in which a two-dimensional failure strain locus was presented. A series of tests for specially designed specimens that were expected to fail in the shear mode, shear-tension mode, and compression mode was conducted to develop a three-dimensional fracture surface covering wide ranges for the two parameters. This paper discusses the test procedures for three different tests in detail. The tensile force versus stroke data are presented as the results of these tests and will be used for the verification of numerical simulations and fracture identifications in Part II.

Removal of Non-volatile Contaminant from Aquifer using Surfactant-enhanced Ozone Sparging (오존과 계면활성제를 이용한 대수층 내 비휘발성 물질 제거)

  • Yang, Su-Kyeong;Shin, Seung-Yeop;Kim, Heon-Ki
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.37-45
    • /
    • 2010
  • Surfactant-enhanced ozone sparging (SEOS), an advanced version of SEAS (surfactant-enhance air sparging) was introduced in this study for the first time for removal of non-volatile contaminant from aquifer. The advantages of implementing SEAS, enhanced air saturation and expanded zone of sparging influence, are combined with the oxidative potential of ozone gas. Experiments conducted in this study were tow fold; 1-dimensional column experiments for the changes in the gas saturation and contaminant removal during sparging, and 2-dimensional box model experiment for the changes in the size of zone of influence and contaminant removal. An anionic surfactant (SDBS, sodium dodecylbenzene sulfonate) was used to control surface tension of water. Fluorescein sodium salt was used as a representative of watersoluble contaminants, for its fluorescence which is easy to detect when it disappears due to oxidative degradation. Three different gases (air, high-concentration ozone gas, and low-concentration ozone gas) were used for the sparging of 1-D column experiment, while two gases (air and low-concentration ozone gas) were used for 2-D box model experiment. When SEOS was performed for the column and box model, the air saturation and the zone of influence were improved significantly compared to air sparging without surface tension suppression, resulted in effective removal of the contaminant. Based on the experiments observations conducted in this study, SEOS was found to maintain the advantages of SEAS with further capability of oxidative degradation of non-volatile contaminants.

Effect of Interfacial Properties on the Detergency in Dishwashing Agent Composition (식기용 세정제 조성에 있어서 계면물성이 세정력에 미치는 영향)

  • Oh, Hyun-Joo;Lim, Hyo-Seon;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.193-199
    • /
    • 2020
  • The effects of the composition of the dishwashing detergent on interfaces of the oil (O) and the aqueous (W) solution in addition to the cleaning effects of interfacial properties were investigated. Also, the cleaning power of the oil contaminated on the surface of the dish according to each composition and the residuals of the contaminants and the cleaning agent after the washing rinses were evaluated. The removal of contaminated oil on the solid (S) surface in the composition of the cleaning agents used in this study was strongly related to the interfacial properties between the W/O/S, and was particularly dependent on the forward and backward dynamic contact angles. When both contact angles were low at the same time, the permeability of the cleaning solution was so high that the contaminated oil showed a high removal effect. The smaller the interfacial tension of O/W was, the better emulsification of the contaminated oil, the higher the interfacial tension, and the poorer emulsification were achieved. However, the emulsification effect did not significantly affect the cleaning power. In particular, in the case of the cleaner having low interfacial tension, the cleaning material remained on the surface of the solid after washing.

Bioinspired CuO Hierarchical Nanostructures for Self-cleaning surfaces and SERS substrates

  • Lee, Jun-Yeong;Han, Jae-Hyeon;Lee, Ji-Hye;Ji, Seung-Muk;Yeo, Jong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.130-130
    • /
    • 2016
  • Bioinspired hierarchical nanostructures for self-cleaning s-tnwjurface and SERS substrates are investigated. The multi-level hierarchy is combined with CuO nanowire and additional nanoscale structures. CuO nanowire, which has extremely high aspect ratio, serves as a base structure of multi-level hierarchy and additional flower like structures are placed on the CuO nanowires. Since as-fabricated CuO nanostructures are hydrophilic, the surface is coated with perfluorooctyltrichlorosilane in order to change its wetting property to hydrophobic. While those CuO based nanostructures have a sufficient roughness for superhydrophobic characteristics, hierarchical nanoflowers on nanowire structures lead to a self-cleaning surface. Furthermore, flower like nanostructures provide reentrant curvatures, thus enabling oleophobic property. The surfaces has a repellency even for a tiny droplet (10 nL) of low surface tension liquids (~35 mN/m). On the on hands, nanoflowers provide many number of nanoscale gaps. After a thin layer of silver is deposited on the surface of CuO nanostructures, those nanoscale gaps act as hot-spot for surface enhanced Raman scattering (SERS). To analyze SERS enhancement of the surfaces, Raman shift is measured with varying molar density of 4-Mercaptopyridine from mM to pM. From these results, hierarchical CuO nanostructures are suitable for self-maintenance and cost effective SERS sensing applications.

  • PDF

Micro-Gravity Research on the Atomization Mechanism of Near-Critical Mixing Surface Jet

  • Tsukiji, Hiroyuki;Umemura, Akira;Hisida, Manabu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.774-778
    • /
    • 2004
  • The atomization process of a circular $SF_{6}$ liquid jet issued into an otherwise quiescent, high-pressure $N_2$ gas was observed to explore the breakup mechanism of liquid ligaments involved in turbulent atomization. Both liquid and gas temperatures were fixed at a room temperature but the gas pressure was elevated to more than twice the critical pressure of $SF_{6}$. Therefore, the liquid surface was in a thermodynamic state close to a critical mixing condition with suppressed vaporization. Since the surface tension and the surface gas density approach zero and the surface liquid density, respectively, phenomena equivalent to those which would appear when a very high speed laminar flow of water were injected into the atmospheric-pressure air can be observed by issuing $SF_{6}$ liquid at low speeds in micro-gravity environment which avoid disturbances due to gravity forces. The instability ob near-critical mixing surface jet was quantitatively characterized using a newly developed device, which could issue a very small amount of $SF_{6}$ liquid at small constant velocity into a very high-pressure $N_2$ gas.

  • PDF

Synthesis and Characterization of Interfacial Properties of Sorbitan Laurate Surfactant (Sorbitan Laurate 계면활성제 합성 및 계면 특성에 관한 연구)

  • Lee, Seul;Kim, ByeongJo;Lee, JongGi;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • The critical micelle concentration (CMC) of sorbitan laurate SP 20 surfactant in this paper was near $7.216{\times}10^{-4}mol/L$ and the surface tension at CMC was about 26.0 mN/m, which showed higher CMC and lower surface tension than those of octylphenol ethoxylate octylphenol ethoxylate (OPE) 10 surfactant. Dynamic surface tension measurement using a maximum bubble pressure tensiometer showed that the adsorption rate at the interface between air and surfactant solution was found to be slower with SP 20 surfactant, presumably due to a low mobility of SP 20 surfactant monomer. The contact angle of SP 20 surfactant solution was observed to decrease with an increase in surfactant concentration and showed a larger value than that of OPE 10 surfactant solution. Half-life time for foams generated with 1 wt% surfactant solution was also larger with SP 20 surfactant, which indicated higher foam stability with SP 20 surfactant. Dynamic behavior study reveals that the solubilization of n-decane oil was much lower with SP 20, which is in good agreement with experimental results of foam stability, contact angle and CMC. Dynamic interfacial tension measurement by a spinning drop tensiometer shows that interfacial tensions at equilibrium condition in both systems were almost the same but the time required to reach equilibrium was longer with SP 20.

Study on the Peel off Style Low Viscosity Epoxy and Separation Media for a Moving Historic Sites (유구 이전 전용 저점도형 에폭시와 박리제에 관한 연구)

  • Han, Won-Sik;Hong, Tae-Kee;Park, Gi-Jung;Lim, Sung-Jin;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.24
    • /
    • pp.37-42
    • /
    • 2008
  • Stability of the moving historic sites have something to do with the degree of easiness of work as well as physical property of polymer product. These agents should be able to use without the effect of outer environments like water or low temperature and must have stability during progress of working the peel off Urethane pre-product from Epoxy surface. So, we synthesized low viscosity epoxy resin and hardener with best physical quality and separation media for the moving of historical sites. These products have very good tension strength, adhesion strength, low viscosity and various physical properties that the users want. Particularly, separation media products have good separation of Urethane pre-products surface and Epoxy final product surface.

  • PDF