• Title/Summary/Keyword: Low Salinity Water

Search Result 545, Processing Time 0.036 seconds

Characterizations of Water Quality, and Potential Relationships of Nitrogen Components and Microbes in the Mulgol Pond on Dokdo, Korea (독도 물골의 수질 특성 및 질소화합물과 미생물간의 잠재적 관계)

  • WOO, SANG YOON;LEE, HYEON BEEN;JEONG, DONG HYUK;AN, JE BAK;YOUN, JIN SUK;PAK, JAE-HONG;PARK, JONG SOO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.2
    • /
    • pp.124-134
    • /
    • 2021
  • Water in the Mulgol pond on Dokdo (island), Korea, was historically used for drinking water, but now it has been no longer used for this purpose due to regionally low water quality. Since 2007, this pond has been covered with a metal lid to protect from pollutants of seabirds, indicating limited light penetration into the Mulgol pond. Here, we investigated water quality in the pond and potential relationships of nitrogen components and microbes in May, June, August, and November 2020. The source salinity ranged from 1.39 to 1.57 psu. Suspended solids (0.8~5.1 mg L-1) and chlorophyll-a (<0.01~0.49 ㎍ L-1) remained low. The concentration of dissolved inorganic nitrogen (DIN) was between 35.9 and 47.2 mg L-1. Thus, water in the Mulgol pond proves to be brackish water with low chlorophyll-a and high nutrients. This unique environment may be established by limited light intensity, sea fog (or seawater), and fecal pellets from many seabirds. Although the light source (800~8000 lux) was exposed to the four subsamples, chlorophyll-a concentrations were below <0.5 ㎍ L-1 during the incubation periods. This result suggests that the biomass of phytoplankton does not increase along with an increase in light intensity. Furthermore, the content of nitrate constituted more than 90% of DIN, and a significant negative correlation between nitrate concentration and bacterial abundance was shown in May and June 2020 during the light exposure experiments (R=-0.762, p<0.05). Thus, it is possible that bacteria may be a significant agent to reduce nitrate concentration in the Mulgol pond, the relationship between nitrate concentration and bacterial abundance may vary seasonally.

Oceanographic Features Around Aquaculture Areas of the Eastern Coast of Korea (동해안 연안양식장 주변해역의 해양학적 특성)

  • Jeong, Hee-Dong;Kim, Sang-Woo;Kwon, Kee-Young;Lim, Jin-Wook;Kwoun, Chul-Hui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.4
    • /
    • pp.334-344
    • /
    • 2013
  • In order to understand the characteristics of oceanic environment in the coastal aquaculture waters of the East Sea, the observation of the CTD (temperature and salinity), dissolved oxygen, chlorophyll a and N/P (DIN ($NO_2$-N, $NO_3$-N, $NH_4$-N) : DIP($PO_4$-P)) ratio was carried out at Sokcho, Jukbyon and Gampo in February, April, June, August, October, December 2013. Based on T(temperature)-S(salinity) diagram analysis, the water masses in the study area were divided into 3 groups; Tsushima Surface Water (TSW: $20-28.3^{\circ}C$ temperatures and 31.04-33.75 salinities), Tsushima Middle Water (TMW: $8.1-16.3^{\circ}C$ and 33.00-34.49), and North Korean Cold Water (NKCW: $1.8-9.4^{\circ}C$ and 33.78-34.42). In winter, DO concentrations in the northern part were higher than those in southern part. In spring and fall, they were low in the surface layer, and increased in summer. Chl-a concentrations < $0.4{\mu}g/L$ dominated in February, April, October and December. Chl-a concentrations were higher in June and August. In particular, the highest Chl-a concentration > $2{\mu}g/L$ was observed in the middle layer of Gampo in August. In February, April, June and December, the N/P ratio in the most of the water masses was less than the Redfield ratio (16), indicating that nitrate did act as a limiting factor in phytoplankton growth. On the contrary, in August and October, the N/P ratio in surface and sub-surface layer was greater than the Redfield ratio, suggesting that phosphate was a limiting factor.

Environmental Assessment for Acid Mine Drainage by Past Coal Mining Activities in the Youngwol, Jungseon and Pyungchang areas, Korea (영월, 정선 및 평창지역 폐 석탄광 산성광산배수의 환경오염 평가)

  • 정명채
    • Economic and Environmental Geology
    • /
    • v.36 no.2
    • /
    • pp.111-121
    • /
    • 2003
  • The objective of this study is to investigate the physical and chemical properties for environmental assessment of water system affected by acid mine drainage (AMD) from coal mining activities in the Youngwol, Jungseon and Pyungchang areas in Korea. During November 2000 to July 2002, 6 times of water samples were collected season-ally from acid mine drainage and nearby streams at 13 coal mines in the study area. The physical and chemical properties including pH, Eh, TDS, salinity, bicarbonates and DO were measured in the field. Eighteen cations includ-ing Al, Ca, Fe, Mg, Mn and Zn, and 6 anions including nitrates and sulfates were also analyzed by ICP-AES and If, respectively. Acid water from the Jungam coal mine has typical characteristics of AMD with very low pH(3∼4) and high TDS(1,000∼5,000 mg/1). Relatively high concentrations(mg/kg) of heavy meals, especially for Al(380), Fe(80), Mn(44) and Zn(8), were found in water samples from the Jungam coal mine area. Water samples from the Seojin, Sebang and Sungjin coal mines also contained over 50 mg/l of Al, >100 mg/1 of Fe and )10 mg/1 of Mn. In addition to anioins, over 1,000 mg/l of sulfate was found in several water samples. Seasonally, the concentrations of metals and sulfates varied; wet season samples were relatively higher in metals and sulfates than dry season samples. It is needed to establish the proper remediation and environmental monitoring of the AMD continuously.

Hydrogeochemical study of a watershed in Pocheon area: controls of water chemistry

  • Kim, Kyoung-Ho;Yun, Seong-Taek;Chae, Soo-Ho;Jean, Jong-Wook;Lee, Jeong-Ho;Kweon, Hae-Woo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.121-121
    • /
    • 2004
  • The groundwater in the Pocheon area occurs from both a fractured bedrock aquifer in igneous and metamorphic rocks and an alluvial aquifer with a thickness of <50 m, and forms a major source of domestic and agricultural water supply. In this study, we performed a hydrogeochemical study in order to identify the control of geochemical processes on groundwater quality. For this study, groundwater level and physicochemical parameters (EC, Eh, pH, alkalinity) were monitored once a month from a total of 150 groundwater wells between June 2003 to August 2004. A total of 153 water samples (13 surface water, 66 alluvial groundwater, 74 bedrock groundwater) were also collected and analyzed in February 2004. Groundwater chemistry in the study area is very complex, depending on a number of major factors such as geology, degree of chemical weathering, and quality of recharge water. Hydrochemical reactions such as the leaching of surficial and near-solace soil salts, dissolution of calcite, cation exchange, and weathering of silicate minerals are proposed to explain the chemistry of natural groundwater. Alluvial groundwaters locally have very high TDS concentrations, which are characterized by their chloride(nitrate)-sulfate-bicabonate facies and low Na/Cl ratio. Their grondwater levels are highly fluctuated according to rainfall event. We suggest that high nitrate content and salinity in such alluvial groundwaters originates from the local recharge of sewage effluents and/or fertilizers. Likewise, high concentrations of nitrate were also locally observed in some bedrock groundwaters, suggesting their effect of anthropogenic contamination. This is possibly due to the bypass flow taking place through macropores. Tile degree of the weathering of silicate minerals seems to be a major control of the distribution of major cations (sodium, calcium, magnesium, potassium) in bedrock groundwaters, which show a general increase with increasing depth of wells. Thermodynamic interpretation of groundwater chemistry shows that the groundwater in the study area is in chemical equilibrium with kaolinite and Na-montmorillonite, which indicates that weathering of plagioclase to those minerals is a major control of hydrochemistry of bedrock groundwater. The interpretation of the molar ratios among major ions, as well as the mass balance calculation, also indicates the role of both dissolution/precipitation of calcite and Ca-Na cationic exchange as bedrock groundwaters evolves progressively.

  • PDF

Effect of Flooding Treatment on the Desalting Efficiency and the Growth of Soiling and Forage Crops in a Sandy Soil of the Iweon Reclaimed Tidal Land in Korea (이원간척지 사질 염류토양의 담수제염처리가 제염효과와 녹비.사료작물의 생육에 미치는 영향)

  • Sohn, Yong-Man;Kim, Hyun-Tea;Jeon, Geon-Yeong;Song, Jae-Do;Lee, Jae-Hwang;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.16-24
    • /
    • 2010
  • Effect of flooding on the desalting efficiency and the growth of sudan grass, barnyard grass, sesbania and corn was studied in a sandy soil of the Iweon reclaimed tidal land. Flooding plots were treated by 400 (one time flooding), 800 (two times flooding), and 1,200 mm(three times flooding) of water, respectively, and then soil salinities of the treated plots were compared with salinity of the control plot (not flooded) for estimation of desalting effect. Desalting ratio of 1,200 mm treatment was 78.3% for depth 0-20 cm, 70.5% for depth 20-40 cm and 60.8% for depth 40-60 cm, and then the soil salinity reached at 3~6 dS $m^{-1}$. Consequently, it was considered that sandy saline soil was satisfactorily desalted for upland crops to be cultivated by 1,200 mm flooding, but insufficiently desalted by 400 mm and 800 mm flooding because of high salinity ranged 5~14 dS $m^{-1}$ even after flooding treatment. In addition, it was estimated that soil salinity should be controled lower than 7.7 dS $m^{-1}$ in order to obtain more than 80%of crop emergence when four crops are simultaneously cultivated by inter- or mixed cropping in a field. Dry matter yields (kg $10a^{-1}$) was 1,068 for sudan grass, 696for barnyard grass, 1,426 for sesbania, and 1,164 for corn by 1,200 mm flooding treatment, but only 46.8~74.3% by 800 mm flooding treatment and 2.9~25.5% by 400 mm flooding treatment. Therefore, it is concluded that the flooding treatment more than 1,200 mm is necessary for satisfactory desalinization in order for the low salt tolerance crops to be cultivated in the sandy reclaimed tidal land.

Studies on Ichthyophthirius multifiliis Fouquet, 1876 in freshwater fishes: I. biological characteristics of I. Multifiliis (담수산 백점충(Ichthyophthirius multifiliis Fouquet, 1876)에 관한 연구 : I. 백점충의 생물학적 성상)

  • Ji, Bo-Young;Kim, Ki-Hong;Park, Soo-Il;Kim, Yi-Cheong
    • Journal of fish pathology
    • /
    • v.10 no.2
    • /
    • pp.113-123
    • /
    • 1997
  • Concerned to the life cycle of Ichthyophthirius multifiliis, the biological characteristic of the parasites was studied in the rainbow trout (Oncorhynchus mykiss) and the Korean catfish (Silurus asotus) Under the experimental condition of $9^{\circ}C$- $28^{\circ}C$, tomitogenesis rate was positively proportional to water temperature, but not at over $28^{\circ}C$. The protomonts showed a high rate of tomitogenesis at $26^{\circ}C$ in comparision with other temperature conditions. Temperature affected tomitogenesis rate which resulted from the various conditions of salinity, pH and formalin concentration. The protomonts showed a high rate of tomitogenesis at pH 6.9 in comparision with other pH conditions at all temperatures tested. This result revealed that the opitimum pH for tomitogenesis was 6.9. The protomont had more tolerance against salinity and formalin concentration at low temperature ($18^{\circ}C$) than at high one ($22^{\circ}C$). Both trophont and protomont were not infective, but theront was infective.

  • PDF

Ecological Comparison of Several Lakes in Summer Stagnation Period (하계정체기에 있어서 수개호소의 생태학적 비교연구)

  • 엄규백
    • Journal of Plant Biology
    • /
    • v.16 no.3_4
    • /
    • pp.17-34
    • /
    • 1973
  • The physico-chemical factors, the distribution of chlorophyll and the primary production of the lakes Hwajinpo, Yongrangho, Chunchonho, Uiamho, Soyangho and Changjamot have been studied in order to make ecological comparison among these lakes during summer stagnation period of August to September of 1973. On the basis of the characteristics of these lakes, the lake types have been discussed. Thermocline is observed at 3-4m zone in the lake Changjamot and 4-5m zone in the lake Yongrangho. In the case of lake Hwajinpo and impoundments, the distinct thermal stratification is not observed at the summer stagnation period. As to vertical distribution of dissolved oxygen, a positive heterograde curve is obtained in the lakes Hwajinpo and Yongrangho. In the lake Changjamot the typical clinograde curve and the oxygen depletion in hypolimnion are observed. In the case of impoundments, however, the orthograde curve is observed in the lakes Chunchonho and Uiamho. While in the lake Soyangho, any stratification of the disssolved oxygen is not found. In the brackish lakes, such as lakes Hwajinpo and Yongragho, the salinity of hypolimnion is found to be much higher than that of epilimnion. In the lake Hwajinpo, the salinity of hypolimnion is exhibited 32.7$\textperthousand$, which is nearly the same as sea water. The distribution of nitrogenous compounds and phosphates is found to be high in the lake Changjmot. The silicate is also found in high concentration in the lake Chunchonho, and the distribution of nutrients in the brackish lakes is generally low. As to the vertical distribution of chlorophyll level, the lake Changjamot shows a stratum type and the brackish lakes L-type stratification. In the impoundments, lakes Chunchonho and Uiamho appear to be homogeneous type. Seasonal variation of chlorophyll level in the lake Changjamot is examined from January to September 1973. The vertical distribution of chlorophyll during the period of circulation from January to April is homogeneous type and is stratum type thereafter. The maximum chlorophyll level is 277.4mg/$m^2$ on June 23 and the pattern of seasonal variation of chlorophyll level is comparable to the type of eutrophy. The horizontal distribution of chlorophyll level is studied in the brackish lakes, Hwajinpo and Yongrangho. The pattern of distribution is found to be an irregular type. On the basis of measurements of primary production by means of the carbon-14 method and the distribution of chlorophyll level, it is concluded that the interior part of the lake Hwajinpo and Changjamot are eutrophic and the exterior part of the lake Hwajinpo, lake Yongrangho and the impoundments, lake Uiambo and Soyangho are mesotrophic.

  • PDF

Characteristics of benthic macroinvertebrate community and distribution of golden apple snail in certified environmentally-friendly paddy field complexes of South Korea (친환경 인증 논의 저서성 대형무척추동물 군집과 왕우렁이 분포의 특성)

  • Jeong Hwan Bang;I-Chan Shin;Young-Mi Lee;Dong-Gyu Lee;Mi-Jung Park;Seulgi Lee;Hyun-Jo Yoon;Sang-Gu Park;Yong-In Kuk;Sung-Jun Hong
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.2
    • /
    • pp.126-137
    • /
    • 2023
  • Paddy fields provide important habitats for biodiversity conservation within the agricultural ecosystem. Their importance is gradually increasing as their ecological value is better understood. Benthic macroinvertebrates dominate paddy fields. They play an essential role in maintaining the biodiversity of paddy ecosystems. This study aimed to analyze characteristics of benthic macroinvertebrate communities and main environmental factors affecting the distribution of golden apple snails (Pomacea canaliculata). Results showed that the diversity index (H') of the benthic macroinvertebrate community was the highest at the Sangju site (St. 12) but the lowest at the Sancheong site (St. 18). Total Dissolved Solids (TDS), salinity, and Electrical Conductivity (EC) values were the highest in Gimhae and Yeongam based on Canonical Correspondence Analysis (CCA). Numbers of P. canaliculata (m-2) were relatively low in Gunsan and Iksan where water temperatures were high. Therefore, changes in geographical characteristics and environmental factors might affect the distribution of P. canaliculata and characteristics of benthic macroinvertebrate communities. Results of this study can be used as primary data for biodiversity conservation and ecosystem service evaluation in agroecosystems.

Establishment of Marine Ecotoxicological Standard Method for Larval Fish Survival Test (어류 자어의 사망률을 이용한 해양생태독성시험 방법에 관한 연구)

  • Park, Gyung-Soo;Kang, Ju-Chan;Yoon, Sung-Jin;Lee, Seung-Min;Hwang, Un-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.2
    • /
    • pp.140-146
    • /
    • 2008
  • Marine ecotoxicological standard method using fish larvae was established with the standard test species of Oryzias latipes(Japanese Medaka) and Paralichthys olivaceus(flounder) and with the 7 day $LC_{50}$ as endpoint. Test method referred to the USEPA(1994) with the replacement of test species found in the Korean water. Standard test species were selected in terms of the species supply and ecological importance in Korean waters. Japanese medaka can be reared with small tanks in the lab and has wide tolerance on salinity, and flounder eggs can be easily obtained from commercial fish hatcheries. General conditions for larval fish toxicity test are as follows. The possible salinity ranges for toxicity test were $0{\sim}35\;psu$ for medaka and >20 psu for flounder. Test type was designated as static non-renewal test if the dissolved oxygen in the test chamber does not fall below 4.0 mg/L. Ages of test species were selected as 7 days after hatched for medaka(about 5 mm TL) and 25 days for flounder(about 10 mm TL) because of the low natural mortality after these periods. Test can be accepted when the survival rates are over 80% in control. Also, species sensitivity on standard reference materials(copper, cadmium or zinc) must be provided with the toxicity test results.

Regeneration Processes of Nutrients in the Polar Front Area of the East Sea 1. Relationships between Water Mass and Nutrient Distribution Pattern in Autumn (동해 극전선역의 영양염류 순환과정 1. 추계 수괴와 영양염 분포와의 관계)

  • Moon Chang-Ho;YANG Han-Soeb;LEE Kwang Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.4
    • /
    • pp.503-526
    • /
    • 1996
  • A synoptic survery of chemical characteristics in the last Sea of Korea was carried out at the 11 stations near Ullungdo in November, 1994 on board R/V Tam-Yang. On the basis of the vortical distribution patterns of temperature, salinity and dissolved oxygen, water masses in the study area are divided into five groups; 1) Tsushima Surface Water (TSW), 2) Tsushima Middle Water (TMW), 3) East Sea Intermediate Water (ESIW), 4) last Sea Proper Water (ESPW), 5) Mixed Water (MW). In the vertical profiles of nutrients, the concentrations were very low in the surface layer and increased rapidly near the thermocline. There was a slight decrease in the ESIW and the concentrations were constant with the depth below 300m except dissolved silicate which still increased with depth. Relatively high value of Si/P ratio (25.2) in ESPW, whick is the oldest water mass, suggests that Si is regenerating more slowly compared to other nutrients. The relatively high value of N/P ratio (18.6) in the surface layer might be related to high vertical eddy diffusivity $(K_z)$ of $1.19\;cm^{2}/sec$ and high nitrate upward flux of $103.7\;{\mu}g-at/m^{2}/hr$, compared to the values reported in other areas. Apparent Oxygen Utilization (AOU) was very low in the surface layer and increased in the TMW, but there was a slight decrease in the ESIW. The highest value of AOU occurred in the ESPW. The slpoe of P/AOU was 0.50. The study on the relationship between water masses and nutrient distribution patterns is important in understanding the regeneration processes of nutrients in the polar region of the last Sea.

  • PDF