• Title/Summary/Keyword: Low Salinity Water

Search Result 545, Processing Time 0.03 seconds

The Evaluation of the Water Quality in Coastal Boundary on Tidal flat (통계분석기법을 이용한 전남 갯벌 해역 수질특성)

  • Jun, Sue-Kyung;Kim, Chong-Ki;Kim, Yun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • To understand characteristics of the water quality on the coastal boundary on tidal flat, field observations between 2008 and 2009 were undertaken twice a month at five coastal areas (Muan bay, Tando bay, Hampyeong bay, Shinan Jido and Yeongkwang coastal areas). Yearly water temperature difference was large with the range between $1.3^{\circ}C$ and $31.1^{\circ}C$. Salinity was about 32 but was the lower less than 20 for the heavy rainfall season. DO was high in winter and low in summer according to the variation of water temperature. pH represented the variation similar to DO. Suspended solid was averagely high over 100 mg/l in Yeongkwang coastal area, especially. COD did not revealed large variation with the value of about 1 mg/l. DIN and DIP concentration were high when freshwater was highly input in summer. DIN concentration was low for winter and early spring but DIP concentration did not show the seasonal variation with the continuous increase from July 2009 to December 2009. Chlorophyll a appeared high for spring with approximately $10\;{\mu}g/l$ and was higher for summer in Yeongkwang coastal area than other sites. The results of principal component analysis conducted to compare the characteristics of water quality observed in study areas showed the distinguishable features as follows. The freshwater input fluctuation appeared as the first factor in Muan and Tando bays, and the change of water temperature was the first factor in Shinan Jido and Yeongkwang coastal areas. The influence mixed with the variation of freshwater outflow and the change of water temperature in Hampyeong bay was to be the first factor.

Semiweekly variation of Spring Phytoplankton Community in Relation to the Freshwater Discharges from Keum River Estuarine Weir, Korea (금강하구언 담수방류와 춘계 식물플랑크톤 군집의 단주기 변동)

  • Yih, Won-Ho;Myung, Geum-Og;Yoo, Yeong-Du;Kim, Young-Geel;Jeong, Hae-Jm
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.3
    • /
    • pp.154-163
    • /
    • 2005
  • Irregular discharges of freshwater through the water gates of the Keum River Estuarine Weir, Korea, whose construction had been completed in 1998 with its water gates being operated as late as August 1994, drastically modified the estuarine environment. Sharp decrease of salinity along with the altered concentrations of inorganic nutrients are accompanied with the irregular discharges of freshwater into the estuary under the influence of regular semi-diurnal tidal effect. Field sampling was carried out on the time of high tide at 2 fixed stations(St.1 near the Estuarine Weir and St.2 off Kunsan Ferry Station) every other day for 4 months from mid-February 2004 to investigate into the semi-weekly variation of spring phytoplankton community in relation to the freshwater discharges from Keum River Estuarine Weir. CV(coefficient of variation) of salinity measurements was roughly 2 times greater in St.1 than that in St.2, reflecting extreme salinity variation in St.1 Among inorganic nutrients, concentrations of N-nutrients($NO_3^-,\;NO_2^-$ and $NH_4^+$) were clearly higher in St.1, to imply the more drastic changes of the nutrient concentrations in St.1. than St.2 following the freshwater discharges. As a component of phytoplankton community, diatoms were among the top dominants in terms of species richness as well as biomass. Solitary centric diatom, Cyclotella meneghiniana, and chain-forming centric diatom, Skeletonema costatum, dominated over the phytoplankton community in order for S-6 weeks each (Succession Interval I and II), and the latter succeeded to the former from the time of <$10^{\circ}C$ of water temperature. Cyanobacterial species, Aphanizomenon Posaquae and Phormidium sp., which might be transported into the estuary along with the discharged freshwater, occupied high portion of total biomass during Succession Interval III(mid-April to late-May). During this period, freshwater species exclusively dominated over the phytoplankton community except the low concentrations of the co-occurring 2 estuarine diatoms, Cyclotella meneghiniana and Skeletonema costatum. During the 4th Succession Interval when the water temperature was over $18^{\circ}C$, the diatom, Guinardia delicatula, was predominant for a week with the highest dominance of $75\%$ in discrete samples. To summarize, during all the Succession Intervals other than Succession Interval III characterized by the extreme variation of salinity under cooler water temperature than $18^{\circ}C$, the diatoms were the most important dominants for species succession in spring. If the scale and frequency of the freshwater discharge could have been adjusted properly even during the Succession Interval III, the dominant species would quite possibly be replaced by other estuarine diatom species rather than the two freshwater cyanobacteria, Aphanizomenon flosaquae and Phormidium sp.. The scheme of field sampling every other day for the present study was concluded to be the minimal requirement in order to adequately explore the phytoplankton succession in such estuarine environment as in Keum River Estuary: which is stressed by the unpredictable and unavoidable discharges of freshwater under the regular semi-diurnal tide.

Chemical Mass Balance of Materials in the Keum River Estuary: 1. Seasonal Distribution of Nutrients (금강하구의 물질수지: 1. 영양염의 계절적 분포)

  • Yang, Jae-Sam;Jeong, Ju-Young;Heo, Jin-Young;Lee, Sang-Ho;Choi, Jin-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.71-79
    • /
    • 1999
  • As part of an on-going project investigating flux of materials in the Keum River Estuary, we have monitored seasonal variations of nutrients, suspended particulate matter (SPM), chlorophyll, and salinity since 1997. Meteorological data and freshwater discharge from the Keum River Dike were also used, Our goal was to answers for (1) what is the main factor for the seasonal fluctuation of nutrients in the Keum River Estuary? and (2) are there any differences in nutrient distributions before and after the Keum River Dike construction? Nitrate concentrations in the Keum River water were kept constant through the year. Whereas other nutrients varied with evident seasonality: high phosphate and ammonium concentrations during the dry season and enhanced silicate contents during the rainy season. SPM was found similar trend with silicate. During the rainy season, the freshwater discharged from the Keum River Dike seemed to dilute the phosphate and ammonium, but to elevate SPM concentration in the Keum Estuary. In addition, the corresponding variations of SPM contents in the estuarine water affected the seasonal fluctuations of nutrients in the Estuary. The most important source of the nutrients in the estuarine water is the fluvial water. Therefore, the distribution patterns of nutrients in the Estuary are conservative against salinity. Nitrate, nitrite and silicate are conservative through the year. The distribution of phosphate and ammonium on the other hand, display two distinct seasonal patterns: conservative behavior during the dry season and some additive processes during the rainy days. Mass destruction of freshwater phytoplankton in the riverine water is believed to be a major additive source of phosphate in the upper Estuary. Desorption processes of phosphate and ammonium from SPM and organic matter probably contribute extra source of addition. Benthic flux of phosphate and ammonium from the sediment into overlying estuarine water can not be excluded as another source. After the Keum River Dike construction, the concentrations of SPM decreased markedly and their role in controlling of nutrient concentrations in the Estuary has probably diminished. We found low salinity (5~15 psu) within 1 km away from the Dike during the dry season. Therefore we conclude that the only limited area of inner estuary function as a real estuary and the rest part rather be like a bay during the dry season. However, during the rainy season, the entire estuary as the mixing place of freshwater and seawater. Compared to the environmental conditions of the Estuary before the Dike construction, tidal current velocity and turbidity are decreased, but nutrient concentrations and chance of massive algal bloom such as red tide outbreak markedly increased.

  • PDF

Relationship between Distributional Characteristics of Heterotrophic Dinoflagellate $Noctiluca$ $scintillans$ and Environmental Factors in Gwangyang Bay and Jinhae Bay (광양만과 진해만에서 종속영양와편모조류 $Noctiluca$ $scintillans$의 분포특성과 환경인자와의 관계)

  • Baek, Seung-Ho;Shin, Hyeon-Ho;Kim, Dong-Sun;Kim, Young-Ok
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.2
    • /
    • pp.81-91
    • /
    • 2011
  • To understand the spatio-temporal fluctuations and ecological characteristics of heterotrophic dinoflagellate $Noctiluca$ $scintillans$, we investigated their population densities and environmental factors during four seasons at 20 stations of Gwangyang Bay and at 23 stations of Jinhae Bay in 2010. $N.$ $scintillans$ was seasonally abundant during spring and summer, with temperature ranging 15 to $27^{\circ}C$ in the both bays, whereas the density reduced in fall and winter. The populations of $N.$ $scintillans$ at each station in both bays showed a significantly positive relationship with water temperature, indicating that relatively high water temperature within its optimum temperature stimulates the growth of $N.$ $scintillans$ population. In particular, low water temperature (<$4^{\circ}C$) and salinity (<12 psu) led to disappear of $N.$ $scintillans$ population, although they were observed at all season in both bays. Spatio-temporal variations of Chl.$a$ concentration was not significantly correlated with $N.$ $scintillans$ population densities. However, the $Noctiluca$ abundances were also high during spring and summer season when relatively high Chl.$a$ concentration was observed in both bays. This result suggests that standing crops of phytoplankton may be one of important contributing factors to enhance the abundance of $N.$ $scintillans$.

Spatial Distribution of Macrobenthos in Sueocheon Stream Estuary at the Nothern Part of Gwangyang Bay, Korea (광양만 북부 수어천 하구역의 여름철 대형저서동물 공간분포)

  • Lim, Hyun-Sig;Choi, Jin-Woo;Choi, Sang-Duk
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.2
    • /
    • pp.76-86
    • /
    • 2012
  • Macrozoobenthos were collected from 24 sites using small grab ($0.05m^2$) in order to see the spatial distribution of them at Sueocheon stream at the northern part of Gwangyang Bay during summer season when the maximum ecological processes are occurring. A total of 44 species of macrozoobenthos occurred, and their mean density was $789individuals/m^2$. Mollusks was the dominant faunal group accounted for 43.1% and 86.8% of the whole community density and biomass, respectively. Top five dominant species were a molluscan, Corbicula japonica (40.7%), two polychaete worms, Neanthes japonica (19.3%) and Heteromastus filiformis( 8.1%), and two crustaceans, Paranthura japonica (6.9%) and Jaeropsis sp. (6.9%). Species diversity index was very low with mean value of 1.12 and maximum value was recorded at the river mouth. At the upper stream, a brackish water species such as Corbicula japonica showed their maximum population density. The overall distribution of stream macrobenthos showed a rather simple pattern along with salinity and grain size gradients with few brackish water species occurring at coarse sediments in the stream but more diverse faunas inhabiting fine sediments in the river mouth.

Nutrients and Phytoplankton Blooms in the Southern Coastal Waters of Korea: I. The Elemental Composition of C, N, and P in Particulate Matter in the Coastal Bay Systems

  • Kang, Chang-Keun;Kim, Pyoung-Joong;Lee, Won-Chan;Lee, Pil-Yong
    • Journal of the korean society of oceanography
    • /
    • v.34 no.2
    • /
    • pp.86-94
    • /
    • 1999
  • An investigation was conducted to determine limiting nutrients in the bay systems of the southern coastal area of Korea. The elemental composition of C, N, and P in suspended particulate matter was monitored nearly monthly in Chinhae and Koje Bays and seasonally in Deukryang Bay for 2 years. Atomic C:N ratio in particulate matter ranges from 4.3 to 9.6, typical of marine phytoplankton. C:P and N:P ratios vary from the Redfield ratio to 229 (C:P) and 37 (N:P). A constant C:N ratio of 6.87 from regression of particulate C and N concentrations demonstrates that the particulate matter in the systems originates from primary production. C:P and N:P ratios from regression of C on P and N on P are well associated with changes in salinity. The low N:P ratio of 13.1 implies N limitation in the environments of the systems. This seems to result from the low N:P ratio of nutrients released across sediment-water interface. Phytoplankton response, expressed here as the increase of chlorophyll a, to N addition also verifies N limitation for phytoplankton communities. In heavy rainfall season (from June to September), the addition of excessive N via streams into the stratified coastal water proliferates phytoplankton greatly. During the phytoplankton blooms, C:P and N:P ratios are much higher than the Redfield ratio, implying P limitation. This results from the high N:P ratio in nutrients supplied from stream waters. Strong stratification during the blooms also interrupts the supply of nutrients, particularly p, from bottom waters. Dependent upon precipitation, this tendency shows great inter-annual variation.

  • PDF

Study on monitoring and prediction for the red tide occurrence in the middle coastal area in the South Sea of Korea II. The relationship between the red tide occurrence and the oceanographic factors (원격탐사를 이용한 한국 남해 중부해역에서의 적조 예찰 연구 II. 적조발생과 해양인자간의 상관성 연구)

  • 윤홍주;남광우;조한근;변혜경
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.938-945
    • /
    • 2004
  • On the relationship between the red tide occurrence and the oceanographic factors in the middle coastal area in the South Sea of Korea, the favorable oceanographic conditions for the red tide formation are considered as follows; the calm weather increases sea water temperature in summer and early-fall which the red tide occurs frequently, and the heavy precipitation brings some riverine water to ween: low salinity, high suspended solid, low phosphorus and high nitrogen, respectively. We decided the potential areas in the coastal zones vulnerable to the red tide occurrence based on the limited factors controlling the growth of phytoplankton. By using GIS through the overlap for three subject figures (phosphorus, nitrogen and suspended solids), it was founded that the potential areas are the Yeosu∼Dolsan coast, the Gamak bay, the Namhae coast, the Narodo coast, the Goheung and Deukryang bay. This result has very well coincided to the results of the satellite and in-situ data.

Experiment on Settling Velocity of Suspended Mineral Particles (부유된 광물성 입자의 침강 속도에 관한 실험)

  • Kim, Jong-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.9
    • /
    • pp.723-734
    • /
    • 2007
  • This study was to investigate the settling velocity which is an important factor for the prediction of cohesive deposition under the various densities of particle and dissolved ion addition$(Na^+,\;Cl^-,\;OH^-,\;H^+)$ in rivers, ports, reservoirs and lakes. Settling velocity of suspended fine particles in still water was measured with a pressure sensor (maximum 10 mbar). At the initial concentration of 20g/l of alumina and quartz the average settling velocities were high due to the aggregation behaviour of particles. At this point it was 0.185 mm/s (alumina) and 0.022 mm/s (quartz). Above this initial concentration it was on the decrease owing to the hindered settling. The higher the salinity is, the faster the settling velocity of alumina and quartz is. Furthermore, in an acid condition the average settling velocity of alumina was on the decrease. In an alkaline water, which causes strong flocculation, the average settling velocity of alumina it was observed on the increase. However, in an alkaline medium the low average settling velocity of quartz powder was measured.

Effect of Temperature and Body Size on Oxygen Consumption and Ammonia Excretion of Oyster, Crassostrea gigas (굴, Crassostrea gigas의 대사율에 미치는 수온 및 개체크기의 영향)

  • Shin, Yun-Kyung;Hur, Young-Baek;Myeong, Jeong-In;Lee, Sik
    • The Korean Journal of Malacology
    • /
    • v.24 no.3
    • /
    • pp.261-267
    • /
    • 2008
  • The tendency of metabolism in oyster, Crassostrea gigas, was investigated in relation to the water temperature and salinity. Oxygen consumption and ammonia excretion were measured and O:N ratio were calculated according to the water temperature from February 2007 to September 2008 and body size. The relationship between oxygen consumption and body weight has been examined in C. gigas. The weight-specific oxygen consumption rate (mg $O_2$/g/h) varied inversely with size. Oxygen consumption and ammonia excretion increased with an increase in water temperature. O:N ratio measured in this study ranged from 8 to 40 under ordinary sea water and the ratio was 8 at $25^{\circ}C$ and 16 at $10^{\circ}C$. This indicates that oyster mainly use the protein as the primary catabolic substrate during gametogenesis. Lower O:N ratio in winter suggests that oysters have to meet their energy demand by metabolizing protein to survive in stressful conditions such as low temperature and lack of sufficient food supply. This studies will provide the basic data for oyster culture farm in assessing the carrying capacity and sustainable management.

  • PDF

Physical and Sedimentological Changes in the Keum Estuary after the Gate-Close of Keum River Weir (하구언 갑문폐쇄 후 금강하구의 물리, 퇴적학적 특성변화)

  • 최진용;최현용
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.262-270
    • /
    • 1995
  • A comparative study to understand the changes in physical and sedimentological natures was carried out in the Keum Estuary before and after the gate-close of Keum River weir. After closing of weir-gate maximum tidal current speed decreased about 30∼40% compared with that of the previous gate-opening period. Water masses also represent vertical stratifications both on water salinity and water transparency. The Keum Estuary seems to be changed from the well-mixed type estuary during the gate-opening period to the "partially-mixed type" and/or "salt-wedge type" estuary after the closing of weir-gate. The concentrations of suspended matter range 10∼100 mg/l in surface waters after the gate-close of Keum River Weir, representing about 1/4 to 1/3 decrease than those during the gate-close of Keum River Weir, representing about 1/4 to 1/3 decrease than those during the gate0opening period. Such decrease of suspended mater appears to be due to the decrease in the resuspension of bottom sediments, and also due to the vertical stratification of water masses that prevented the upward diffusion of turbid bottom waters. It is, therefore, expected that the depositional environment of Keum Estuary has been changing into the low energy conditions after the closing of weir gate, resulting in the rapid deposition of fine suspended matters within the Keum Estuary.

  • PDF