• Title/Summary/Keyword: Low Salinity Water

Search Result 545, Processing Time 0.027 seconds

Descriptive Analysis of Low Saline Water in Youngdeuk, the East Coast of Korea in 2010 (2010년 동해 영덕 연안의 저염수)

  • Choi, Yong-Kyu;Kwon, Kee-Young;Yang, Joon-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.379-387
    • /
    • 2012
  • In order to see the oceanographic conditions, the observations of aquaculture farm of ascidian in Youngdeuk, the east coast of Korea were conducted through 6 times-23 February, 6 April, 8 June, 19 August, 6 October and 20 December-in 2010. Surveys were conducted in 20 stations bimonthly using SBE 19 CTD instrument. The mixed layer depth (MLD) was deep in winter and shallow in summer. The cold water below $5^{\circ}C$ in temperature was occupied below thermocline through all season. The temperature was high in the southeastern area. The salinity was increased from the coast to the open sea. The halocline was distinct at 20 m depth in August and at 40 m depth in October. The lowest value of salinity was appeared at the depth of 10 m in October. In addition the value of precipitation minus evaporation denoted negative in October. These low saline water seemed to inflow to the coast from the open sea. Therefore the low saline water moved to the east coast of Korea. The EKWC may play an important role to convey the low saline water. It may affect the aquaculture farm along the coast as the mass mortality of ascidian. It needs to clarify the role and pathway of EKWC to transfer the low saline water along the east coast of Korea.

Characteristics of Water Temperature Inversion Observed in a Region West of Jeju Island in April 2015 (2015년 4월에 제주 서부해역에서 발생한 수온역전층 특성)

  • Kim, Seong Hyeon
    • Ocean and Polar Research
    • /
    • v.42 no.2
    • /
    • pp.97-113
    • /
    • 2020
  • In-situ observations were carried out in April 2015 to investigate the occurrence of water temperature inversion in a region west of Jeju Island. Analysis of in-situ in the western part of Jeju island showed that cold water moved to the southeast from the surface to the middle layer and warm water moved from the middle to the lower layer of the northwest direction. The water temperature inversion occurred at 84 stations (63.1%) out of 133 stations. At the boundary of the water temperature inversion layer, it was formed in the middle layer and disappeared. In the strongly appearing, it started from the middle layer to the lower layer. The shape of the water temperature inversion layer was different. As a result of horizontal water temperature slope analysis of the water temperature inversion zone, maximum 0.23℃/km was obtained and the mean was 0.06℃/km. The role of water temperature inversion as an indicator to determine the formation of water front. As a result of the water mass analysis, Jeju Warm Current Water and Tsushima Warm Current Water of high temperature and high salt intruded from the middle to the bottom. In the middle layer occurred as the Yellow Sea Cold Water of low water temperature and low salinity expanded.

Impacts of Temperature, Salinity and Irradiance on the Growth of Ten Harmful Algal Bloom-forming Microalgae Isolated in Korean Coastal Waters (한국연안에서 분리한 적조형성 미세조류 10종의 성장에 미치는 온도, 염분, 광도의 영향)

  • Lee, Chang-Kyu;Lee, Ok-Hee;Lee, Sam-Geun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.79-91
    • /
    • 2005
  • In order to understand growth characteristics of ten major species of microalgae responsible for frequent harmful algal blooms in Korean coastal waters, the growth rates of the isolates were examined in relation with the impacts of water temperature, salinity and irradiance. In addition, their bloom events since 1990 as well as monthly abundance of vegetative cells were analyzed. Heterocapsa triquetra, Eutreptiella gymnastica and Alexandrium tamarense were considered as relatively mid temperature adapted species in that growth rates were comparatively high at low water temperatures of $10{\sim}16^{\circ}C$ and drastically decreased at above $22^{\circ}C$. Prorocentrum micans and Pyramimonas sp. were categorized as relatively high temperature adapted species by showing comparatively better growths at high water temperatures above $25^{\circ}C$. Akashiwo sanguinea, Heterosigma akashiwo, Prorocentrum minimum and Scrippsiella trochoidea were eurythermal species with relative high growth rates in a broad ranges of water temperature, $16{\sim}25^{\circ}C$ were slightly halophobic, showing better growths at low salinities of $10{\sim}30$ psu than at above 35 psu. H. akashiwo, P. minimum and H. triquetra were euryhaline species with remarkable growths in a broad ranges of salinity, 15-40 psu. Frequent algal blooms by these three species at extremely low salinities below 25 psu after rainfall were attributed to their euryhaline and slightly halophobic physiological characteristics. Growth rates of H. akashiwo, P. minimum and Pyraminonas sp. increased with the increase of irradiance within the experimental ranges of $2{\sim}150\;{\mu}E{\cdot}m^{-2}{\cdot}s^{-1}$. However, A. sanguinea, A. tamarense and H. triquetra showed better growths at comparatively low irradiance of $50{\sim}100\;{\mu}E{\cdot}m^{-2}{\cdot}s^{-1}$ and drastic decreases in growth rates above $150\;{\mu}E{\cdot}m^{-2}{\cdot}s^{-1}$ of irradiance. Overall, relatively high temperature adapted species make blooms frequently in high water temperature season with strong natural irradiance, and relatively low temperature adapted species grow better at low water temperature with relatively weak natural irradiance.

On the Marine Environment and Distribution of Phytoplankton Community in the Northern East China Sea in Early Summer 2004 (이른 여름 동중국해 북부해역의 해양환경과 식물플랑크톤 군집의 분포특성)

  • Yoon, Yang-Ho;Park, Jong-Sick;Soh, Ho-Young;Hwang, Doo-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.2
    • /
    • pp.100-110
    • /
    • 2005
  • We carried oui a study on the marine environment and distribution of phytoplankton community, such as chlorophyll a, species composition, dominant species and standing crops in the Northern East China Sea during early summer of 2004. According to the analysis of a T-S diagram, three characteristics of water masses were identified. We classified them into the coastal water mass, the cold water mass and the oceanic water mass. The first was characterized by the low temperature and the low salinity originated from China territory, the secondary was characterized by the low temperature, the low salinity and the high density originated from bottom cold water of Yellow Sea, and the third was done by the high temperature and salinity originated from Tsushima warm current. The internal discontinuous layer among them was farmed at the intermediate depth (about $5{\sim}30m$ layer). And the thermal front by upwelling region between the cold water mass and Tsushima warm current appeared in the central parts of the South Sea of Korea. The Phytoplankton community in the surface and stratified layers was a total of 44 species belonging to 26 genera. Dominant species were Prorocentrum triestinum, Scrippsiella trochoidea, Skeletonema costatum & Leptocylindrus mediterraneus. Standing crops of phytoplankton in the surface layer fluctuated between $0.3{\times}10^3$ cells/L and $10.8{\times}10^3$ cells/L. Diatoms appeared mainly in the Tsushima warm current regions, and flagellates occurred in the frontal zone and the low salinity regions where was the transfer areas of Chinese continental coastal waters. Chlorophyll a concentration by controlled phytoflagellate ratio in the South Sea of Korea was high values in the frontal zone and sub-surface layer. It was high concentration in the upwelling and coastal waters regions, but low concentration in the Tsushima warm current regions. The Chl-a maximum layers appeared in the thermochline depth or sub-surface layer lower than thermocline. The phytoplankton production in the South Sea of Korea was controlled by the expanded coastal waters of Chinese Continent which include a high concentrations of nutrients.

  • PDF

The Influence of Water Temperature and Salinity on the Filtration Rates of the Short-necked clam, Ruditapes philippinarum (수온과 염분 변화에 따른 바지락의 여과율 변동)

  • Shin, Hyun-Chool;Lim, Kyeong-Hun
    • The Korean Journal of Malacology
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The present study was performed to describe the influence of water temperature and salinity on the filtration rates of the short-necked clam, Ruditapes philippinarum. The clams were collected at tidal flat near Yeosu city, Cheollanamdo, Korea, from July 2001 to August 2001. Diatoms, Phaeodactylum tricornutum (KMCC B-128), were indoor-cultured by f/2 medium, and were used to measure the filtration rate of the clams. Filtration rates of the clams were measured by indirect method. Cell concentrations of food organisms were determined by direct counting cells using the hemacytometer under the light microscope. The filtration rate of the clams increased with temperatures up to the optimum temperature, circa 25$^{\circ}C$. Above this optimum temperature, the filtration rate decreased drastically. Also the filtration rate of the clams increased with salinity up to 35 psu. The maximal filtration rates of the clams were recorded at 20-25$^{\circ}C$, similar to be known as the optimal temperature for their growth, and 25-35 psu, respectively. The minimal filtration rates of the clams were recorded at 5$^{\circ}C$ and 15 psu. At the similar temperature and salinity, the filtration rate of the younger clams was higher than that of the older ones. Thermal coefficient, Q$_{10}$ values at low temperature range were much higher than those at high temperature range. These results indicate the short-necked clam is more sensitive in cold water. As they grow up, they become more stronger against their ambient environmental changes, such as thermal-shock, salinity changes.

  • PDF

Biochemical Methane Potential of Chemically Enhanced Primary Treatment Sludge for Energy-Independence of Sewage Treatment Plants (하수처리장 에너지 자립화를 위한 고도화학침전 슬러지의 메탄잠재력 평가)

  • Chun, Minsun;Kim, Hyoungho;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.4
    • /
    • pp.322-331
    • /
    • 2020
  • By introducing chemically enhanced primary treatment (CEPT) in the first stage of sewage treatment, organic matter in sewage can be effectively recovered. Because CEPT sludge contains a high biodegradable organic matter in volatile solids (VS), it is feasible to convert the collected CEPT sludge into energy through anaerobic digestion. This study examined the properties and biochemical methane potential (BMP) of the CEPT sludge obtained from a sewage treatment plant located in an ocean area. The CEPT sludge contains a VS content of 37,597 mg/L, which is higher than that of excessive sludge (ES), i.e., 33,352 mg-VS/L. In the methane generation reaction, the lag period was as short as 1 to 2 days. The BMP for the CEPT sludge was 0.57 ㎥-CH4/kg-VSremoved which is better than that of ES, i.e., 0.36 ㎥-CH4/kg-VSremoved. Unfortunately, the CEPT sludge showed a high salinity as 0.56~0.75% probably due to the saline sewage. Due to the salinity, repeated BMP testing in a sequencing batch reactor showed significantly low methane production rates and BMPs. Also, the ES showed a strongly reduced BMP when the salinity was adjusted from 0.20 to 0.70% by NaCl. The ES mixture with higher CEPT content showed a better BMP, which is suitable for co-digestion. Besides, anaerobic digestion for 100% CEPT sludge can be a considerable option instead of co-digestion.

Spatial distribution of halophytes and environment factors in salt marshes along the eastern Yellow Sea

  • Chung, Jaesang;Kim, Jae Hyun;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.264-276
    • /
    • 2021
  • Background: Salt marshes provide a variety of ecosystem services; however, they are vulnerable to human activity, water level fluctuations, and climate change. Analyses of the relationships between plant communities and environmental conditions in salt marshes are expected to provide useful information for the prediction of changes during climate change. In this study, relationships between the current vegetation structure and environmental factors were evaluated in the tidal flat at the southern tip of Ganghwa, Korea, where salt marshes are well-developed. Results: The vegetation structure in Ganghwa salt marshes was divided into three groups by cluster analysis: group A, dominated by Phragmites communis; group B, dominated by Suaeda japonica; and group C, dominated by other taxa. As determined by PERMANOVA, the groups showed significant differences with respect to altitude, soil moisture, soil organic matter, salinity, sand, clay, and silt ratios. A canonical correspondence analysis based on the percent cover of each species in the quadrats showed that the proportion of sand increased as the altitude increased and S. japonica appeared in soil with a relatively high silt proportion, while P. communis was distributed in soil with low salinity. Conclusions: The distributions of three halophyte groups differed depending on the altitude, soil moisture, salinity, and soil organic matter, sand, silt, and clay contents. Pioneer species, such as S. japonica, appeared in soil with a relatively high silt content. The P. communis community survived under a wider range of soil textures than previously reported in the literature; the species was distributed in soils with relatively low salinity, with a range expansion toward the sea in areas with freshwater influx. The observed spatial distribution patterns may provide a basis for conservation under declining salt marshes.

Distributions of Water Temperature, Salinity and Transparency in Kamak Bay on June (6월중 가막만의 수온, 염분 및 투명도 분포)

  • LEE Kyu-Hyong;CHOE Kyu-Jung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.157-165
    • /
    • 1985
  • Character of oceanic conditions in the bay is investigated by taking hydrographic data on june in Kamak Bay which has two channels and four submarine topographic parts of its own. This bay has four remarkable water mass influenced greatly by the above topographical factor: inner bay water, Yosu harbor water, the middle water and outer bay water. General characteristics of these four water mass were as fellows: inner bay water has a stagnation character with the influence of inland, Yosu harbor water has a out-sea character with the low salinity caused by run-off of Somjin river, outer bay water has a out-sea character with same values vertically coused by eddy current or bottom turbulunce and the middle water has a middle character among the inner bay water and outer bay water. Outer waters flowed in the bay through both channels during the flood are come upon at a near by Daekyong-do and Hangdae-ri of Dolsan-do. Eddy current or bottom turbulunce in the vincinity of Kunnae-ri which is located at south of the bay are showed sinking of water during the flood flow, while that during the ebb flow shelved up-welling phenomena.

  • PDF

Seasonal Variations of Water Quality in the Coastal Sea of Jungmun Resort Complex in Jeiu Island (제주도 중문관광단지 연안해역 수질의 계절변동)

  • Jang Seung-Min;Choi Young-Chan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.2
    • /
    • pp.3-18
    • /
    • 2002
  • This study has been carried out to find the water Quality in coastal sea of fungmun area, southern Jeju Island. In-situ observations and water sampling had been made every month from July 1997 to June 2000. The distributions of water temperature and salinity over the study area have been 13.8~27.0℃ and 30.0~34.7‰, respectively. Salinity is showed low salinity from June to September (rainy season) because of rain. Tsushima Warm Waters (TWW) as ≥15℃ and ≥34‰ influence the adjacent sea around Jeju Island all year round. Yangtse Coastal Waters (YCW) influence the surface layer around Jeju from June to September and so strong stratification (termocline, halocline) resulted at the depth of between 20~30m at outer-sea. However the stratification does not happen even in summer at inner-sea, which seem to be caused due to vertical mixing by wind, waves and tides. A water mass of high value of water temperature and salinity (respectively 14.1~17.7℃, 33.9~34.1‰) stayed at the lower layer in outer-sea all the year round. It is probably formed by mixing between TWW and YSBCW(Yellow Sea Bottom Cold Water). The mean value of DO was the lowest in summer and the highest in winter. COD and TH were the highest in summer and the lowest in winter. However, TP showed the lowest value in summer season, because the mean value of N/P ratio was over 16. The mean of N/P ratio was under 16 in other seasons. The phosphate would be a limiting factor in the growth of phytoplanHon in summer. Nitrate would be a limiting factor in other seasons. Distribution of chlorophyll a did not show any seasonal change in the study period, but especially increased during April and May in the first year(1998) and the second year(1999) all over the study area, which suggested that phytoplankton inhabitation distributed widely in the study area. The space averaged values were the highest for TIN in rainy season and lower for TP in rainy season than in other seasons. It suggests that river runoff influences the inner-sea.

  • PDF

Distributional Characteristics of Escherichia coli at Nakdong River Mouth and Busan Coastal Area (낙동강 하구와 부산연안해역에서 대장균의 해역별 분포특성)

  • Baek, Seung Ho;Lee, Min Ji;Yoon, Dongyoung
    • Journal of Marine Life Science
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • In order to assess seasonal and geographical characteristics of pollutant Escherichia coli, we investigated its distribution in Nakdong River mouth and Busan coastal water from February 2013 to November 2015. The coastal area was divided into five different zones (I-V) based on the pollutant level and geographical characteristics. During the study periods, water temperature and salinity varied from 7.50 to 27.64℃ and 16.82 to 34.82 psu, respectively. The annual water temperature variation was characterized in temperate zone. The salinity was significantly (p<0.05) decreased in zone IV and zone III after heavy rain during summer season in 2014, resulting led to elevated E. coli biomass. The highest colony formation of E. coli was recorded at 6,000 cfu l-1 during autumn at station 1 (zone I). On the other hands, during all seasons of 2015, E. coli abundances were kept to be low level in zone III. The E. coli was not significantly (p>0.05) correlated with water temperature. However, the salinity was significantly (r=-0.53, p<0.05) correlated with the E. coli, implying that salinity plays a crucial role in the proliferation of E. coli. Consequently, E. coli in western Busan coastal water might have been significantly promoted by pollutant sources from Nakdong Rive discharge during the spring and summer rainy seasons depending on annual rainfall variations. On the other hands, E. coli in station 1 (i.e., Suyeong Bay) was obviously high due to influences of discharge water from municipal wastewater treatment plant. However, there was no clear seasonality of E. coli.