• Title/Summary/Keyword: Low Rotational Speed

Search Result 164, Processing Time 0.025 seconds

Design and Machining of a Screw Rotor of a Single-Screw Compressor (싱글 스크류 압축기의 스크류 로터의 설계 및 가공)

  • Kim, Doo-Hyeong;Kyung, Jin-Ho;Kim, Yoang-Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.452-457
    • /
    • 2016
  • Single screw compressors are widely used in the fields of air/gas compression, refrigeration, and chemical fluid transportation systems. A single-screw compressor is composed of a screw rotor and two gate rotors located at both sides. This simple construction enables low rotational speed of the rotor, efficient compression with low noise, low vibration, and long bearing life. Despite these merits, the design method of single-screw compressors is not well known. To accelerate the industrial application of single-screw compressors, a design method using coordinate transformation is presented in this paper, and a tool trajectory is established for machining. Finally, the screw rotor, which is machined using the proposed method, is presented.

Experimental Study of Vane Expander Prototype Applied to Micro Organic Rankine Cycle (초소형 유기랭킨사이클 적용 프로토 타입 베인 팽창기에 관한 실험적 연구)

  • Shin, Dong Gil;Kim, Young Min
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.230-235
    • /
    • 2014
  • In this study, performances of the vane expander protype for micro organic Rankine cycle with refrigerant R134a as a working fluid have been analyzed. While operating organic Rankine cycle for analysing expander efficiencies such as overall efficiencies, volumetric efficiencies and mechanical efficiencies under $110^{\circ}C$ of expander inlet temperature, the power of the expander, inlet temperature of expander, inlet pressure of expander and the flow rate of the working fluid(refrigerant R134a) have been measured while varying the rotational speed of the expander. It was found that the more the expander revolution speed is high, the more the expander power, overall efficiencies and volumetric efficiencies are higher. In case of 500 rpm of rotational speed, overall efficiencies are 6~7% and in case of 1000 rpm, overall efficiencies are 11~12%. We have found that low volumetric efficiencies result in poor overall efficiencies.

Development of The New High Specific Speed Fixed Blade Turbine Runner

  • Skotak, Ales;Mikulasek, Josef;Obrovsky, Jiri
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.392-399
    • /
    • 2009
  • The paper concerns the description of the step by step development process of the new fixed blade runner called "Mixer" suitable for the uprating of the Francis turbines units installed at the older low head hydropower plants. In the paper the details of hydraulic and mechanical design are presented. Since the rotational speed of the new runner is significantly higher then the rotational speed of the original Francis one, the direct coupling of the turbine to the generator can be applied. The maximum efficiency at prescribed operational point was reached by the geometry optimization of two most important components. In the first step the optimization of the draft tube geometry was carried out. The condition for the draft tube geometry optimization was to design the new geometry of the draft tube within the original bad draft tube shape without any extensive civil works. The runner blade geometry optimization was carried out on the runner coupled with the draft tube domain. The blade geometry of the runner was optimized using automatic direct search optimization procedure. The method used for the objective function minimum search is a kind of the Nelder-Mead simplex method. The objective function concerns efficiency, required net head and cavitation features. After successful hydraulic design the modal and stress analysis was carried out on the prototype scale runner. The static pressure distribution from flow simulation was used as a load condition. The modal analysis in air and in water was carried out and the results were compared. The final runner was manufactured in model scale and it is going to be tested in hydraulic laboratory. Since the turbine with the fixed blade runner does not allow double regulation like in case of full Kaplan turbine, it can be profitably used mainly at power plants with smaller changes of operational conditions or in case with more units installed. The advantages are simple manufacturing, installation and therefore lower expenses and short delivery time for turbine uprating.

A parametric Study in Incremental Forming of Magnesium Alloy Sheet (인크리멘탈 성형을 이용한 마그네슘 합금 판재의 성형변수에 관한 연구)

  • Park, J.G.;You, B.S.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.412-419
    • /
    • 2008
  • Using lightweight materials in vehicle manufacturing in order to reduce energy consumption is one of the most effective approach to decrease pollutant emissions. As a lightweight material, magnesium is increasingly employed in automotive parts. However, because of its hexagonal closed-packed(HCP) crystal structure, in which only the basal plane can move, the magnesium alloy sheets show low ductility and formability at room temperature. Thus the press forming of magnesium alloy sheets has been performed at elevated temperature within range of $200^{\circ}C{\sim}250^{\circ}C$. Here we try the possibility of sheet metal forming at room temperature by adopting incremental forming technique with rotating tool, which is so called as rotational-incremental sheet forming(RISF). In this rotational-incremental sheet forming the spindle tool rotates on the surface of the sheet metal and moves incrementally with small pitch to fit the sheet metal on the desired shape. There are various variables defining the formability of sheet metals in the incremental forming such as speed of spindle, pitch size, lubricants, etc. In this study, we clarified the effects of spindle speed and pitch size upon formability of magnesium alloy sheets at room temperature. In case of 0.2, 0.3 and 0.4mm of pitch size with hemispherical rotating tool of 6.0mm radius, the maximum temperature at contact area between rotating tool and sheet metal were $119.2^{\circ}C,\;130.8^{\circ}C,\;and\;177.3^{\circ}C$. Also in case of 300, 500, and 700rpm of spindle speed, the maximum temperature at the contact area were $109.7^{\circ}C,\;130.8^{\circ}C\;and\;189.8^{\circ}C$.

Full-scale TBM excavation tests for rock-like materials with different uniaxial compressive strength

  • Gi-Jun Lee;Hee-Hwan Ryu;Gye-Chun Cho;Tae-Hyuk Kwon
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.487-497
    • /
    • 2023
  • Penetration rate (PR) and penetration depth (Pe) are crucial parameters for estimating the cost and time required in tunnel construction using tunnel boring machines (TBMs). This study focuses on investigating the impact of rock strength on PR and Pe through full-scale experiments. By conducting controlled tests on rock-like specimens, the study aims to understand the contributions of various ground parameters and machine-operating conditions to TBM excavation performance. An earth pressure balanced (EPB) TBM with a sectional diameter of 3.54 m was utilized in the experiments. The TBM excavated rocklike specimens with varying uniaxial compressive strength (UCS), while the thrust and cutterhead rotational speed were controlled. The results highlight the significance of the interplay between thrust, cutterhead speed, and rock strength (UCS) in determining Pe. In high UCS conditions exceeding 70 MPa, thrust plays a vital role in enhancing Pe as hard rock requires a greater thrust force for excavation. Conversely, in medium-to-low UCS conditions less than 50 MPa, thrust has a weak relationship with Pe, and Pe becomes directly proportional to the cutterhead rotational speed. Furthermore, a strong correlation was observed between Pe and cutterhead torque with a determination coefficient of 0.84. Based on these findings, a predictive model for Pe is proposed, incorporating thrust, TBM diameter, number of disc cutters, and UCS. This model offers a practical tool for estimating Pe in different excavation scenarios. The study presents unprecedented full-scale TBM excavation results, with well-controlled experiments, shedding light on the interplay between rock strength, TBM operational variables, and excavation performance. These insights are valuable for optimizing TBM excavation in grounds with varying strengths and operational conditions.

Characteristics of the Shaft Vibration in a High Head Pump-Turbine (고낙차 펌프-터빈에서의 축계 진동 특성)

  • Ha, Hyun-Cheon;Choi, Seong-Pil
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.27-31
    • /
    • 1999
  • This paper describes the shaft vibration phenomena measured on a pump-turbine of a pumped storage power plant. The pump-turbine runs at a rotational speed of 450 rpm (7.5 Hz). The power output (load) of the pump-turbine is varied from 100 to 300 MW in the generating mode. The magnitude of the shaft vibration highly depends on the power load. The vibration magnitude of the shaft is very high in the middle load zone from 170 to 210 MW, elsewhere the vibration is low. From nitration spectra, it is shown that the frequency of major nitration in that load zone is 2.5 Hz which is approximately $34\%$ of the shaft rotating speed in Hz. This frequency component does not occur below and above that load zone. This subsynchronous vibration is caused by the flow induced disturbance due to spiral vortex flow downstream of the pump-turbine runner. Furthermore, the shaft vibration is highly decreased due to an increased bearing preload.

  • PDF

Characteristics of the Shaft Vibration in a High Head Pump-Turbine (고낙차 펌프-터빈에서의 축계 진동 특성)

  • Ha, Hyun Cheon;Choi, Seong Pil
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.166-172
    • /
    • 1998
  • This paper describes the shaft vibration phenomena measured on a pump-turbine ofa pumped storage power plant. The pump-turbine runs at a rotational speed of 450 rpm (7.5 Hz). The power output (load) of the pump-turbine was varied from 100 to 300 MW in the generating mode. It was found that the magnitude of the shaft vibration was highly dependent upon the power load. The vibration magnitude of the shaft vibration is very high in the middle load zone from 170 to 210 MW, elsewhere the vibration low. From vibration spectra, it was found that the frequency of major vibration in that load zone was 2.5 Hz which is approximately $34\%$ of the shaft rotating speed in Hz. This frequency component disappeared below and above that load zone. This subsynchronous vibration is caused by the flow induced disturbance due to spiral vortex flow downstream of the pump-turbine runner. Furthermore, it was found that shaft vibration was highly decreased due to the increase of bearing preload.

  • PDF

Analysis to reduce the acceleration time and deceleration time of direct drive robot (직접구동형로봇의 가감속시간 단축에 관한 연구)

  • 임규영;이광남;고광일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.372-376
    • /
    • 1990
  • This paper represents a control method of improving the performance of direct drive robot. The direct transfer of torque and rotational speed of direct drive motor to the robot body without reduction gear makes the robot speed fast. However, the variation of inertia matrix and low friction cause the control difficult, and one more effort must be in the reducing the acceleration and deceleration time to reduce the cycle time. To fasten the cycle time and to improve the robustness of robot, one control method is developed, and implemented in the Goldstar DD robot. This method does not need to change the conventional PI type control structure, but one additional compensational control law is required. The control law can be obtained via inverse dynamic model of robot, and inverse model of existing control loop. The effects of this control law are shown in this paper.

  • PDF

Improved LVRT Capability and Power Smoothening of DFIG Wind Turbine Systems

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.568-575
    • /
    • 2011
  • This paper proposes an application of energy storage devices (ESD) for low-voltage ride-through (LVRT) capability enhancement and power smoothening of doubly-fed induction generator (DFIG) wind turbine systems. A grid-side converter (GSC) is used to maintain the DC-link voltage. Meanwhile, a machine-side converter (MSC) is used to control the active and reactive powers independently. For grid disturbances, the generator output power can be reduced by increasing the generator speed, resulting in an increased inertial energy of the rotational body. Design and control techniques for the energy storage devices are introduced, which consist of current and power control loops. Also, the output power fluctuation of the generator due to wind speed variations can be smoothened by controlling the ESD. The validity of the proposed method has been verified by PSCAD/EMTDC simulation results for a 2 MW DFIG wind turbine system and by experimental results for a small-scale wind turbine simulator.

Low energy and area efficient quaternary multiplier with carbon nanotube field effect transistors

  • Rahmati, Saeed;Farshidi, Ebrahim;Ganji, Jabbar
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.717-727
    • /
    • 2021
  • In this study, new multiplier and adder method designs with multiplexers are proposed. The designs are based on quaternary logic and a carbon nanotube field-effect transistor (CNTFET). The design utilizes 4 × 4 multiplier blocks. Applying specific rotational functions and unary operators to the quaternary logic reduced the power delay produced (PDP) circuit by 54% and 17.5% in the CNTFETs used in the adder block and by 98.4% and 43.62% in the transistors in the multiplier block, respectively. The proposed 4 × 4 multiplier also reduced the occupied area by 66.05% and increased the speed circuit by 55.59%. The proposed designs are simulated using HSPICE software and 32 nm technology in the Stanford Compact SPICE model for CNTFETs. The simulated results display a significant improvement in the fabrication, average power consumption, speed, and PDP compared to the current bestperforming techniques in the literature. The proposed operators and circuits are evaluated under various operating conditions, and the results demonstrate the stability of the proposed circuits.